Journal of Fourier Analysis and Applications

, Volume 17, Issue 1, pp 96–114 | Cite as

Basic Fourier Series: Convergence on and Outside the q-Linear Grid



A q-type Hölder condition on a function f is given in order to establish (uniform) convergence of the corresponding basic Fourier series S q [f] to the function itself, on the set of points of the q-linear grid. Furthermore, by adding other conditions, one guarantees the (uniform) convergence of S q [f] to f on and “outside” the set points of the q-linear grid.


q-trigonometric functions q-Fourier series Basic Fourier expansions Uniform convergence q-linear grid 

Mathematics Subject Classification (2000)

42C10 33D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abreu, L.D.: A q-sampling theorem related to the q-Hankel transform. Proc. Am. Math. Soc. 133(4), 1197–1203 (2005) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abreu, L.D.: Sampling theory associated with q-difference equations of the Sturm-Liouville type. J. Phys. A, Math. Gen. 38, 10311–10319 (2005) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abreu, L.D.: Functions q-orthogonal with respect to their own zeros. Proc. Am. Math. Soc. 134, 2695–2701 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abreu, L.D., Bustoz, J.: On the completeness of sets of q-Bessel functions \(J_{\nu }^{(3)}(x;q)\). In: Theory and Applications of Special Functions. Dev. Math., vol. 13, pp. 29–38. Springer, New York (2005) (volume dedicated to Mizan Rahman) CrossRefGoogle Scholar
  5. 5.
    Abreu, L.D., Bustoz, J., Cardoso, J.L.: The roots of the third Jackson q-Bessel function. Int. J. Math. Math. Sci. 2003(67), 4241–4248 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Andrews, G.E.: q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra. Regional Conf. Ser. Math., vol. 66. Am. Math. Soc., Providence (1986) Google Scholar
  7. 7.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge Univ. Press, Cambridge (1999) MATHGoogle Scholar
  8. 8.
    Annaby, M.H.: q-type sampling theorems. Results Math. 44, 214–225 (2003) MATHMathSciNetGoogle Scholar
  9. 9.
    Annaby, M.H., Mansour, Z.S.: Basic Sturm-Liouville problems. J. Phys. A, Math. Gen. 38, 3775–3797 (2005) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bustoz, J., Cardoso, J.L.: Basic analog of Fourier series on a q-linear grid. J. Approx. Theory 112, 134–157 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bustoz, J., Suslov, S.K.: Basic analog of Fourier series on a q-quadratic grid. Methods Appl. Anal. 5, 1–38 (1998) MATHMathSciNetGoogle Scholar
  12. 12.
    Cardoso, J.L.: Basic Fourier series on a q-linear grid: convergence theorems. J. Math. Anal. Appl. 323, 313–330 (2006) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dettman, J.W.: Applied Complex Variables. Dover, New York (1984) MATHGoogle Scholar
  14. 14.
    Exton, H.: q-Hypergeometric Functions and Applications. Wiley, New York (1983) MATHGoogle Scholar
  15. 15.
    Fitouhi, A., Hamza, M.M., Bouzeffour, F.: The q-j α Bessel function. J. Approx. Theory 115(1), 144–166 (2002) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge (1990) MATHGoogle Scholar
  17. 17.
    Hardy, G.H., Rogosinski, W.W.: Fourier Series. Dover, New York (1999) Google Scholar
  18. 18.
    Ismail, M.E.H.: The zeros of basic Bessel functions, the functions J ν+ax and associated orthogonal polynomials. J. Math. Anal. Appl. 86, 11–19 (1982) CrossRefGoogle Scholar
  19. 19.
    Ismail, M.E.H., Zayed, A.I.: A q-analogue of the Whittaker-Shannon-Kotel’nikov sampling theorem. Proc. Am. Math. Soc. 183, 3711–3719 (2003) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nikolsky, S.M.: A Course of Mathematical Analysis, vol. 2. Mir, Moscow (1977) MATHGoogle Scholar
  21. 21.
    Koelink, H.T., Swarttouw, R.F.: On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials. J. Math. Anal. Appl. 186, 690–710 (1994) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rahman, M.: The q-exponential functions, old and new. Preprint Google Scholar
  23. 23.
    Reyna, J.A.: Pointwise Convergence of Fourier Series. Lect. Notes Math., vol. 1785. Springer, Berlin (2000) Google Scholar
  24. 24.
    Rubin, R.L.: A q 2-analogue for q 2-analogue Fourier analysis. J. Math. Anal. Appl. 212, 571–582 (1997) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rubin, R.L.: Toeplitz matrices and classical and q-Bessel functions. J. Math. Anal. Appl. 274, 564–576 (2002) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Suslov, S.K.: “Addition” theorems for some q-exponential and q-trigonometric functions. Methods Appl. Anal. 4(1), 11–32 (1997) MATHMathSciNetGoogle Scholar
  27. 27.
    Suslov, S.K.: Some expansions in basic Fourier series and related topics. J. Approx. Theory 115, 289–353 (2002) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Suslov, S.K.: An Introduction to Basic Fourier Series. With a Foreword by Mizan Rahman. Developments in Mathematics, vol. 9. Dordrecht, Kluwer (2003) Google Scholar
  29. 29.
    Suslov, S.K.: Asymptotics of zeros of basic sine and cosine functions. J. Approx. Theory 121, 292–335 (2003) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Swarttouw, R.F.: The Hahn-Exton q-Bessel function. PhD thesis, Technische Universiteit Delft (1992) Google Scholar
  31. 31.
    Tuan, V.K., Nashed, M.Z.: Stable recovery of analytic functions using basic hypergeometric functions. J. Comput. Anal. Appl. 3(1), 33–51 (2001) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UTAD, Quinta de Prados, Edifício das Ciências Florestais, Departamento de MatemáticaCM-UTADVila RealPortugal

Personalised recommendations