Journal of Fourier Analysis and Applications

, Volume 17, Issue 4, pp 640–655

On the Duality Principle by Casazza, Kutyniok, and Lammers



The R-dual sequences of a frame {fi}iI, introduced by Casazza, Kutyniok and Lammers in (J. Fourier Anal. Appl. 10(4):383–408, 2004), provide a powerful tool in the analysis of duality relations in general frame theory. In this paper we derive conditions for a sequence {ωj}jI to be an R-dual of a given frame {fi}iI. In particular we show that the R-duals {ωj}jI can be characterized in terms of frame properties of an associated sequence {ni}iI. We also derive the duality results obtained for tight Gabor frames in (Casazza et al. in J. Fourier Anal. Appl. 10(4):383–408, 2004) as a special case of a general statement for R-duals of frames in Hilbert spaces. Finally we consider a relaxation of the R-dual setup of independent interest. Several examples illustrate the results.


Duality principle Frame Riesz basis Gabor system Wexler-Raz theorem 

Mathematics Subject Classification (2000)

42C15 42C40 42A38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Casazza, P., Kutyniok, G., Lammers, M.: Duality principles in abstract frame theory. J. Fourier Anal. Appl. 10(4), 383–408 (2004) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Christensen, O.: Frames and Bases. An Introductory Course. Birkhäuser, Basel (2008) MATHGoogle Scholar
  3. 3.
    Daubechies, I., Landau, H.J., Landau, Z.: Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl. 1, 437–478 (1995) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2000) Google Scholar
  5. 5.
    Han, D., Larson, D.: Frames, Bases and Group Representations. Mem. Am. Math. Soc. 147(697) (2000) Google Scholar
  6. 6.
    Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ron, A., Shen, Z.: Weyl-Heisenberg systems and Riesz bases in L 2(ℝd). Duke Math. J. 89, 237–282 (1997) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Mathematical SciencesKAISTDaejeonRepublic of Korea
  3. 3.Department of MathematicsYeungnam UniversityGyeongsangbuk-doRepublic of Korea

Personalised recommendations