Journal of Fourier Analysis and Applications

, Volume 17, Issue 1, pp 65–95 | Cite as

Tauberian Theorems for the Wavelet Transform



We make a complete wavelet analysis of asymptotic properties of distributions. The study is carried out via Abelian and Tauberian type results, connecting the boundary asymptotic behavior of the wavelet transform with local and non-local quasiasymptotic properties of elements in the Schwartz class of tempered distributions. Our Tauberian theorems are full characterizations of such asymptotic properties. We also provide precise wavelet characterizations of the asymptotic behavior of elements in the dual of the space of highly time-frequency localized functions over the real line. For the use of the wavelet transform in local analysis, we study the problem of extensions of distributions initially defined on ℝ∖{0} to ℝ; in this extension problem, we explore the asymptotic properties of extensions of a distribution having a prescribed asymptotic behavior. Our results imply intrinsic properties of functions and measures as well, for example, we give a new proof of the classical Littlewood Tauberian theorem for power series.


Wavelet transform Abelian theorems Tauberian theorems Inverse theorems Distributions Quasiasymptotics Slowly varying functions 

Mathematics Subject Classification (2000)

42C40 26A12 40E05 41A60 46F10 42F12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and Its Applications, vol. 27. Cambridge University Press, Cambridge (1989) MATHGoogle Scholar
  2. 2.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Wiley, New York (1959) Google Scholar
  3. 3.
    Bony, J.M.: Second microlocalization and propagation of singularities for semilinear hyperbolic equations. In: Tanaguchi Symp. HERT, Katata, pp. 11–49 (1984) Google Scholar
  4. 4.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003) MATHGoogle Scholar
  5. 5.
    Conway, J.B.: Functions of One Complex Variable II. Springer, New York (1995) MATHGoogle Scholar
  6. 6.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) MATHGoogle Scholar
  7. 7.
    Drozhzhinov, Y.N., Zavialov, B.I.: Tauberian-type theorems for a generalized multiplicative convolution. Izv. Math. 64, 35–92 (2000) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Drozhzhinov, Y.N., Zavialov, B.I.: Tauberian theorems for generalized functions with values in Banach spaces. Izv. Math. 66, 701–769 (2002) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Drozhzhinov, Y.N., Zavialov, B.I.: Asymptotically homogeneous generalized functions. Izv. Nats. Akad. Nauk Arm. Mat. 41, 23–32 (2006) Google Scholar
  10. 10.
    Drozhzhinov, Y.N., Zavialov, B.I.: Asymptotically quasihomogeneous generalized functions. Dokl. Akad. Nauk 421, 157–161 (2008) Google Scholar
  11. 11.
    Durán, A.L., Estrada, R.: Strong moment problems for rapidly decreasing smooth functions. Proc. Am. Math. Soc. 120, 529–534 (1994) MATHGoogle Scholar
  12. 12.
    Estrada, R.: Characterization of the Fourier series of distributions having a value at a point. Proc. Am. Math. Soc. 124, 1205–1212 (1996) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Estrada, R.: The nonexistence of regularization operators. J. Math. Anal. Appl. 286, 1–10 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Estrada, R., Kanwal, R.P.: Singular Integral Equations. Birkhäuser, Boston (2000) MATHGoogle Scholar
  15. 15.
    Estrada, R., Kanwal, R.P.: A Distributional Approach to Asymptotics. Theory and Applications, 2nd edn. Birkhäuser, Boston (2002) MATHGoogle Scholar
  16. 16.
    Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146, 464–495 (1997) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gröchenig, K.: Foundation of Time-Frequency Analysis. Birkhäuser, Boston (2001) Google Scholar
  18. 18.
    Holschneider, M.: Wavelets. An Analysis Tool. Clarendon/Oxford University Press, New York (1995) MATHGoogle Scholar
  19. 19.
    Holschneider, M., Tchamitchian, Ph.: Pointwise analysis of Riemann’s “nondifferentiable” function. Invent. Math. 105, 157–175 (1991) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathematiques & Applications, vol. 26. Springer, Berlin (1997) MATHGoogle Scholar
  21. 21.
    Jaffard, S.: The spectrum of singularities of Riemann’s function. Rev. Mat. Iberoam. 12, 441–460 (1996) MATHMathSciNetGoogle Scholar
  22. 22.
    Jaffard, S.: Wavelet expansions, function spaces and multifractal analysis. In: Twentieth Century Harmonic Analysis—A Celebration (Il Ciocco, 2000). NATO Sci. Ser. II Math. Phys. Chem., vol. 33, pp. 127–144. Kluwer Academic, Dordrecht (2001) Google Scholar
  23. 23.
    Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123, 587 (1996) MathSciNetGoogle Scholar
  24. 24.
    Lazzarini, S., Gracia-Bondía, J.M.: Improved Epstein-Glaser renormalization. II. Lorentz invariant framework. J. Math. Phys. 44, 3863–3875 (2003) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Littlewood, J.E.: The converse of Abel’s theorem on power series. Proc. Lond. Math. Soc. 9, 434–448 (1911) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Łojasiewicz, S.: Sur la valeur et la limite d’une distribution en un point. Stud. Math. 16, 1–36 (1957) MATHGoogle Scholar
  27. 27.
    Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992) MATHGoogle Scholar
  28. 28.
    Meyer, Y.: Wavelets, Vibrations and Scalings. CRM Monograph Series, vol. 9. Am. Math. Soc., Providence (1998) MATHGoogle Scholar
  29. 29.
    Pilipović, S.: Quasiasymptotics and S-asymptotics in \(\mathcal{S}'\) and \(\mathcal{D}'\). Publ. Inst. Math. (Beograd) 72, 13–20 (1995) Google Scholar
  30. 30.
    Pilipović, S., Teofanov, N.: Multiresolution expansion, approximation order and quasiasymptotic behavior of tempered distributions. J. Math. Anal. Appl. 331, 455–471 (2007) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Pilipović, S., Stanković, B., Takači, A.: Asymptotic Behaviour and Stieltjes Transformation of Distributions. Texte zuer Mathematik. Teubner, Leipzig (1990) MATHGoogle Scholar
  32. 32.
    Saneva, K., Bučkovska, A.: Asymptotic expansion of distributional wavelet transform. Integral Transforms Spec. Funct. 17, 85–91 (2006) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Saneva, K., Bučkovska, A.: Tauberian theorems for distributional wavelet transform. Integral Transforms Spec. Funct. 18, 359–368 (2007) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966) MATHGoogle Scholar
  35. 35.
    Seuret, S., Véhel, J.L.: The local Hölder function of a continuous function. Appl. Comput. Harmon. Anal. 13, 263–276 (2002) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Seuret, S., Véhel, J.L.: A time domain characterization of 2-microlocal spaces. J. Fourier Anal. Appl. 9, 473–495 (2003) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Sohn, B.K., Pahk, D.H.: Pointwise convergence of wavelet expansion of \({\mathcal{K}_{r}^{M}}'(\mathbb{R})\). Bull. Korean Math. Soc. 38, 81–91 (2001) MATHMathSciNetGoogle Scholar
  38. 38.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  39. 39.
    Trèves, F.: Topological Vector Spaces, Distributions and Kernel. Academic Press, New York (1967) Google Scholar
  40. 40.
    Triebel, H.: Wavelet frames for distributions; local and pointwise regularity. Stud. Math. 154, 59–88 (2003) MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity. Publ. Inst. Math. (Beograd) (N.S.) 84(98), 159–174 (2008) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Vindas, J.: The structure of quasiasymptotics of Schwartz distributions. In: Linear and Non-linear Theory of Generalized Functions and Its Applications. Banach Center Publ., vol. 88, pp. 297–314. Polish Acad. Sc. Inst. Math., Warsaw (2010) CrossRefGoogle Scholar
  43. 43.
    Vindas, J., Estrada, E.: Distributional point values and convergence of Fourier series and integrals. J. Fourier Anal. Appl. 13, 551–576 (2007) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Vindas, J., Estrada, R.: On the jump behavior of distributions and logarithmic averages. J. Math. Anal. Appl. 347, 597–606 (2008) MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin. Math. Nachr. 282, 1584–1599 (2009) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Vladimirov, V.S., Zavialov, B.I.: On the Tauberian theorems in quantum field theory. Theor. Mat. Fiz. 40, 155–178 (1979) Google Scholar
  47. 47.
    Vladimirov, V.S., Zavialov, B.I.: Tauberian theorems in quantum field theory. In: Current Problems in Mathematics, vol. 15, pp. 95–130, 228. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1980) (in Russian) Google Scholar
  48. 48.
    Vladimirov, V.S., Drozhzhinov, Y.N., Zavialov, B.I.: Tauberian Theorems for Generalized Functions. Kluwer Academic, Dordrecht (1988) MATHGoogle Scholar
  49. 49.
    Vladimirov, V.S., Drozhzhinov, Y.N., Zavialov, B.I.: Tauberian theorems for generalized functions in a scale of regularly varying functions and functionals, dedicated to Jovan Karamata. Publ. Inst. Math. (Beograd) (N.S.) 71, 123–132 (2002) (in Russian) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Wagner, P.: On the quasi-asymptotic expansion of the casual fundamental solution of hyperbolic operators and systems. Z. Anal. Anwend. 10, 159–167 (1991) MATHGoogle Scholar
  51. 51.
    Walter, G.: Pointwise convergence of wavelet expansions. J. Approx. Theory 80, 108–118 (1995) MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Walter, G., Shen, X.: Wavelets and Other Orthogonal Systems, 2nd edn. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2001) MATHGoogle Scholar
  53. 53.
    Zavialov, B.I.: Scaling of electromagnetic form factors and the behavior of their Fourier transforms in the neighborhood of the light cone. Teoret. Mat. Fiz. 17, 178–188 (1973) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jasson Vindas
    • 1
  • Stevan Pilipović
    • 2
  • Dušan Rakić
    • 3
  1. 1.Department of MathematicsGhent UniversityGentBelgium
  2. 2.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  3. 3.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia

Personalised recommendations