Journal of Fourier Analysis and Applications

, Volume 17, Issue 2, pp 320–354 | Cite as

Interpolation and Sampling: E.T. Whittaker, K. Ogura and Their Followers

  • P. L. Butzer
  • P. J. S. G. Ferreira
  • J. R. Higgins
  • S. Saitoh
  • G. Schmeisser
  • R. L. StensEmail author


The classical sampling theorem has often been attributed to E.T. Whittaker, but this attribution is not strictly valid. One must carefully distinguish, for example, between the concepts of sampling and of interpolation, and we find that Whittaker worked in interpolation theory, not sampling theory. Again, it has been said that K. Ogura was the first to give a properly rigorous proof of the sampling theorem. We find that he only indicated where the method of proof could be found; we identify what is, in all probability, the proof he had in mind. Ogura states his sampling theorem as a “converse of Whittaker’s theorem”, but identifies an error in Whittaker’s work.

In order to study these matters in detail we find it necessary to make a complete review of the famous 1915 paper of E.T. Whittaker, and two not so well known papers of Ogura dating from 1920. Since the life and work of Ogura is practically unknown outside Japan, and there he is usually regarded only as an educationalist, we present a detailed overview together with a list of some 70 papers of his which we had to compile. K. Ogura is presented in the setting of mathematics in Japan of the early 20th century.

Finally, because many engineering textbooks refer to Whittaker as a source for the sampling theorem, we make a very brief review of some early introductions of sampling methods in the engineering context, mentioning H. Nyquist, K. Küpfmüller, V. Kotel’nikov, H. Raabe, C.E. Shannon and I. Someya.


Sampling theorem Sampling techniques in engineering Interpolation Japanese mathematics history 

Mathematics Subject Classification (2000)

94A12 41A05 01-02 94-03 01A27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, H.: Ogura Kinnosuke, His Life and Times (in Japanese). Hosei University Press, Tokyo (1992) Google Scholar
  2. 2.
    Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern SamplingTheory: Mathematics and Applications, p.  xvi+417. Birkhäuser, Boston (2001) zbMATHGoogle Scholar
  3. 3.
    Bennett, W.R.: Time division multiplex systems. Bell Syst. Tech. J. 20, 199–221 (1941) Google Scholar
  4. 4.
    Bissell, C.C.: Karl Küpfmüller: a German contributor to the early development of linear systems theory. Int. J. Control 44(4), 977–989 (1986) zbMATHGoogle Scholar
  5. 5.
    Boas, R.P. Jr.: Summation formulas and band-limited signals. Tôhoku Math. J. 24(2), 121–125 (1972) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Borel, É.: La théorie de la relativité et la cinématique. C. R. 156, 215–218 (1913) zbMATHGoogle Scholar
  7. 7.
    Borel, É.: La cinématique dans la théorie de la relativité. C. R. 157, 703–705 (1913) zbMATHGoogle Scholar
  8. 8.
    Butzer, P.L.: Dirichlet and his role in the founding of mathematical physics. Arch. Int. Hist. Sci. 37(118), 49–82 (1987) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Butzer, P.L., Dodson, M.M., Ferreira, P.J.S.G., Higgins, J.R., Lange, O., Seidler, P.: Herbert Raabe’s work in multiplex signal transmission and his development of sampling methods. Signal Process. 90(5), 1436–1455 (2010) zbMATHGoogle Scholar
  10. 10.
    Butzer, P.L., Fehér, F. (eds.): E.B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences, p. xxv+761. Birkhäuser, Basel (1981). Including expanded versions of lectures given at the International Christoffel Symposium held in Aachen and Monschau, November 8–11, 1979 zbMATHGoogle Scholar
  11. 11.
    Butzer, P.L., Stens, R.L.: Shannon’s sampling theorem, Cauchy’s integral formula, and related results. In: Butzer, P.L., Stens, R.L., Sz-Nagy, B. (eds.) Anniversary Volume on Approximation Theory and Functional Analysis, pp. 363–377. Birkhäuser, Basel (1984) Google Scholar
  12. 12.
    Butzer, P.L., Riesi, S., Stens, R.L.: Sampling theory for not necessarily band-limited functions; a historical overview. SIAM Rev. 34(1), 40–53 (1992) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Butzer, P.L., Jansen, M., Zilles, H.: Johann Peter Gustav Lejeune Dirichlet (1805–1859). Genealogie und Werdegang. Zur Aufnahme des Dürener Mathematikers in die Berliner Akademie der Wissenschaften vor 150 Jahren. Dürener Geschbl. 71, 31–56 (1982) MathSciNetGoogle Scholar
  14. 14.
    Butzer, P.L., Stens, R.L., Sz-Nagy, B. (eds.): Anniversary Volume on Approximation Theory and Functional Analysis. Proc. Conf., Oberwolfach, Germany, 1983. ISNM, vol. 65. Birkhäuser, Basel (1984) zbMATHGoogle Scholar
  15. 15.
    Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Dtsch. Math.-Ver. 90(1), 1–70 (1988) zbMATHGoogle Scholar
  16. 16.
    Butzer, P.L., Higgins, J.R., Stens, R.L.: Sampling theory of signal analysis. In: Pier, J.P. (ed.) Development of Mathematics 1950–2000, pp. 193–234. Birkhäuser, Basel (2000) Google Scholar
  17. 17.
    Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Information Technology: Transmission, Processing and Storage, pp. 17–121. Kluwer Academic/Plenum, New York (2001) Google Scholar
  18. 18.
    Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: Sampling, Interpolation and Applications. Cambridge University Press, Cambridge (to appear) Google Scholar
  19. 19.
    Chang, S.: History of German Universities and Science. Hakmunsa, Korea (2000) Google Scholar
  20. 20.
    Chang, S.: Academic Genealogy of Physicists. Seoul National University Press, Seoul (2005) Google Scholar
  21. 21.
    Chang, S.: Academic Genealogy of Mathematicans (2010) Google Scholar
  22. 22.
    Churkin, J.I., Jakowlew, C.P., Wunsch, G.: Theorie und Anwendung der Signalabtastung. Technik, Berlin (1966) Google Scholar
  23. 23.
    Dauben, J.W., Scriba, C.J.: Writing the History of Mathematics: Its Historical Development. Birkhäuser, Basel (2002) zbMATHGoogle Scholar
  24. 24.
    Education Research Society (ed.): Ogura Kinnosuke and the present: how to live his theory. Centennial volume after his birth (in Japanese). Research Society of Ogura Kinnosuke (1986) Google Scholar
  25. 25.
    Ezawa, H.: Impacts of Einstein’s visit on physics in Japan. AAPPS Bull. 15(2), 3–16 (2005) Google Scholar
  26. 26.
    Ferreira, P.J.S.G., Lange, O.: Nyquist (to appear) Google Scholar
  27. 27.
    Friedman, J.G., Yajima, K.: A mathematician abroad: Professor Fujisawa and the American Press in 1922 (2001) Google Scholar
  28. 28.
    Fujiwara, M.: Obituary note, Tsuruichi Hayashi (1873–1935). Tôhoku Math. J. 41, 265–289 (1935/1936) Google Scholar
  29. 29.
    Hayashi, T.: Collected papers on Japanese mathematics, vol. 2. Tokyo (1937) Google Scholar
  30. 30.
    Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. (N.S.) 12(1), 45–89 (1985) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford Science Publications. Clarendon Press, Oxford (1996) Google Scholar
  32. 32.
    Higgins, J.R.: Historical origins of interpolation and sampling up to 1841. Sampl. Theory Signal Image Process. 2(2), 117–128 (2003) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Higgins, J.R., Stens, R.L. (eds.): Sampling Theory in Fourier and Signal Analysis: Advanced Topics. Oxford Science Publications. Oxford University Press, Oxford (1999) Google Scholar
  34. 34.
    Ishiwara, J.: Bericht über die Relativitätstheorie. Jahrb. Radioakt. Elektron. 19, 560–648 (1912) Google Scholar
  35. 35.
    Itakura, K., Kimura, T., Yagi, E.: Nagaoka Hantaro Den, pp. 600. Asahi Shinburisha, Tokyo (1973) (Nagaoka’s biography in Japanese) Google Scholar
  36. 36.
    Iyanaga, S.: On the life and works of Teiji Takagi. In: Takagi, T., Iyanaga, S., Iwasawa, K., Kodaira, K., Yosida, K., (eds.) Collected Papers, 2nd edn., pp. 354–376. Springer, Berlin (1990) Google Scholar
  37. 37.
    Jagerman, D., Fogel, L.J.: Some general aspects of the sampling theorem. IRE Trans. Inf. Theory IT-2, 139–156 (1956) Google Scholar
  38. 38.
    Jansen, M.: Die Ahnen Elwin Bruno Christoffels. Heim. Kreises Aachen 34(3,4), 35(1), 23–26 (1978/1979) Google Scholar
  39. 39.
    Jansen, M: Zur genealogie E.B. Christoffels. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel. The Influence of His Work on Mathematics and the Physical Sciences, pp. 30–32. Birkhäuser, Basel (1981) Google Scholar
  40. 40.
    Kitsuoka, S.: A Legend of the School of Physics. Subaru Shobo, Tokyo (1982) (Butsuri Gakko no Densetsu) (in Japanese) Google Scholar
  41. 41.
    Kolmogoroff, A.N., Tichomirow, W.M.: Arbeiten zur Informationstheorie III: ε-Entropie und ε-Kapazität von Mengen in Funktionalräumen. Mathematische Forschungsberichte, vol. X. VEB Deutscher Verlag der Wissenschaften, Berlin (1960) Google Scholar
  42. 42.
    Kolmogorov, A.N.: On the Shannon theory of information transmission in the case of continuous signals. IRE Trans. Inf. Theory IT-2, 102–108 (1956) Google Scholar
  43. 43.
    Kotel’nikov, V.A.: On the Carrying Capacity of the “Ether” and Wire in Telecommunications. Material for the First All-Union Conference on Questions of Communications. Izd. Red. Upr. Svyazi RKKA, Moscow (1933) (Russian). English transl.: Katsnelson, V.E. In: Benedetto, J.J., Ferreira, P.J.S.G. (eds.) Modern Sampling Theory: Mathematics and Applications, pp. 29–45. Birkhäuser, Boston (2001) Google Scholar
  44. 44.
    Koyama, N.: Japanese Students at Cambridge University in the Meiji Era, 1868–1912: Pioneers for the Modernization of Japan. Transl.: Ruxton, I. (2004, Japanese ed. Tokyo, 1999)
  45. 45.
    Koyama, N.: Kikuchi Dairoku, 1855–1917: educational administrator and pioneer of modern mathematical education in Japan. In: Cortazzi, H. (ed.) Britain & Japan: Biographical Portraits, vol. V. Global Oriental (2005). Chap. 7 Google Scholar
  46. 46.
    Kubota, T.: Obituary note, Matsusaburô Fujiwara. Tôhoku Math. J. 1, 1–2 (1949/1950) MathSciNetzbMATHGoogle Scholar
  47. 47.
    Küpfmüller, K.: Über Einschwingvorgänge in Wellenfiltern. Elektr. Nachrtech. 1(5), 141–152 (1924) (On transient processes in wave filters) Google Scholar
  48. 48.
    Küpfmüller, K.: Die systemtheorie der Elektrischen Nachrichtenübertragung, 3rd edn. Hirzel, Stuttgart (1968) (1 ed. 1949) Google Scholar
  49. 49.
    Lacaze, B.: La formule d’ échantillonnage et A.L. Cauchy. Trait. Signal 14(4), 289–295 (1998) Google Scholar
  50. 50.
    Lemons, D.S., Gythiel, A.: Paul Langevin’s 1908 paper “On the theory of Brownian motion”. Am. J. Phys. 65, 1079–1081 (1997) (“Sur la théorie du mouvement brownien, ” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)) Google Scholar
  51. 51.
    Lindelöf, E.: Le Calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars, Paris (1905). Reprint: Chelsea, New York, 1947 Google Scholar
  52. 52.
    Lüke, H.D.: Zur Entstehung des Abtasttheorems. NTZ 31, 271–273 (1978) Google Scholar
  53. 53.
    Lüke, H.D.: The origins of the sampling theorem. IEEE Commun. Mag. 37, 106–108 (1999) Google Scholar
  54. 54.
    Lüke, H.D., Herbert, P.: Raabe, der “Vater” des Abtasttheorems. NTZ 43, 46 (1990) Google Scholar
  55. 55.
    Makino, T.: The mathematician K. Ogura and the “Greater East Asia war”. In: Booß-Bavnbek, B., Høyrup, J. (eds.) Mathematics and War, pp. 326–335. Birkhäuser, Basel (2003) Google Scholar
  56. 56.
    Marvasti, F. (ed.): Information Technology: Transmission, Processing and Storage. Kluwer Academic/Plenum, New York (2001) Google Scholar
  57. 57.
    Mehra, J., Rechenberg, H.: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925. The Historical Development of Quantum Theory, vol. 1. Springer, New York (1982) Google Scholar
  58. 58.
    Mikami, Y.: The Development of Mathematics in China and Japan (with Appendix by R. Fujisawa), 2 ed., p. x+347. Chelsea, New York (1961) (1 ed. Leipzig, 1913) Google Scholar
  59. 59.
    Mikami, Y., Smith, D.E.: A History of Japanese Mathematics. Open Court, Chicago (1914) Google Scholar
  60. 60.
    Miyake, K.: Teiji Takagi, founder of the Japanese school of modern mathematics. Jpn. J. Math. 2, 151–164 (2007) MathSciNetzbMATHGoogle Scholar
  61. 61.
    Nyquist, H.: Certain factors affecting telegraph speed. Bell Syst. Tech. J. 30, 324–346 (1924) Google Scholar
  62. 62.
    Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928) Google Scholar
  63. 63.
    Ogawa, H.: Sampling theory and Isao Someya: a historical note. Sampl. Theory Signal Image Process. 5(3), 247–256 (2006) MathSciNetzbMATHGoogle Scholar
  64. 64.
    Ogawa, H.: A memorial tribute to Isao Someya, 1915–2007. Sampl. Theory Signal Image Process. 7(3), 227–228 (2008) MathSciNetzbMATHGoogle Scholar
  65. 65.
    Pier, J.P. (ed.): Development of Mathematics 1950–2000. Birkhäuser, Basel (2000) zbMATHGoogle Scholar
  66. 66.
    Poggendorff, J.C.: Biographisch-literarisches Handwörterbuch zur Geschichte der exacten Wissenschaften Google Scholar
  67. 67.
    Raabe, H.: Untersuchungen an der wechselzeitigen Mehrfachübertragung (Multiplexübertragung), Dissertation, TH Berlin, 1939. Elektr. Nachrtech. 16, 213–228 (1939) Google Scholar
  68. 68.
    Sasaki, S.: Obituary note, Tadahiko Kubota (1885–1952). Tôhoku Math. J. 4, 318–319 (1952) zbMATHGoogle Scholar
  69. 69.
    Sasaki, C.: The emergence of the Japanese mathematical community in the modern Western style, 1855–1945. In: Parshall, K.H., Rice, A.C. (eds.) Mathematics Unbound: the Evolution of an International Mathematical Research Community, 1800–1945, Charlottesville, VA, 1999, pp. 229–252. Am. Math. Soc., Providence (2002) Google Scholar
  70. 70.
    Sato, E.: Reexamination of Fujisawa Rikitaro’s theory of mathematics education: on the relation between “arithmetic” and “algebra”. Jpn. J. Educ. Res. 62(4), 20–29 (1995) (in Japanese) Google Scholar
  71. 71.
    Sato, E.: Intuition and logic in mathematics education of Ogura Kinnosuke. Bull. Grad. Sch. Educ. Univ. Tokyo 37, 231–239 (1997) (in Japanese) Google Scholar
  72. 72.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) MathSciNetzbMATHGoogle Scholar
  73. 73.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948) MathSciNetGoogle Scholar
  74. 74.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949) MathSciNetGoogle Scholar
  75. 75.
    Stens, R.L.: Sampling with generalized kernels. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics. Oxford Science Publications, pp. 130–157. Oxford University Press, Oxford (1999). Chap. 6 Google Scholar
  76. 76.
    Takagi, T.: In: Iyanaga, S., Iwasawa, K., Kodaira, K., Yosida, K. (eds.) Collected Papers, 2nd edn., pp. xvi+376. Springer, Tokyo (1990) Google Scholar
  77. 77.
    The Memorial Committee of Dr. Fujisawa (ed.): Reminiscences of Dr. Fujisawa. The Memorial Committee of Dr. Fujisawa, Tokyo (1938) (Fujisawa Hakase Tsuiso-roku) (in Japanese) Google Scholar
  78. 78.
    Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, 2nd edn. Clarendon, Oxford (1948) Google Scholar
  79. 79.
    Verdú, S.: Fifty years of Shannon theory 1948–1949. EEE Trans. Inf. Theory 44, 2057–2078 (1998) zbMATHGoogle Scholar
  80. 80.
    Walter, S.: The non-Euclidean style of Minkowskian relativity. In: Gray, J. (ed.) The Symbolic Universe: Geometry and Physics 1890–1930. Proc. Conf., Open University, Milton Keynes, 1996, pp. 91–127. Oxford Univ. Press, New York (1999) Google Scholar
  81. 81.
    Whittaker, E.T.: On the functions which are represented by the expansion of the interpolation-theory. Proc. R. Soc. Edinb. Sect. A 35, 181–194 (1915) Google Scholar
  82. 82.
    Whittaker, J.M.: On the cardinal function of interpolation theory. Proc. Edinb. Math. Soc. 1(2), 41–46 (1927) zbMATHGoogle Scholar
  83. 83.
    Whittaker, J.M.: Interpolatory Function Theory. Cambridge University Press, Cambridge (1935). Reprint: Stechert-Hafner, New York (1964) Google Scholar
  84. 84.
    Wunsch, G.: Systemtheorie der Informationstechnik, vol. 20. Akademische Verlagsgesellschaft Geest & Portig, Leipzig (1971) Google Scholar

Publications by Ogura

  1. 85.
    Ogura, K.: On the quartic curve having two double points. Tokyo Math. Ges. 4(2), 230–243 (1908) MathSciNetGoogle Scholar
  2. 86.
    Ogura, K.: Two surfaces having equal measures of curvature, but not deformable into each other. Tokyo Math. Ges. 4(2), 338–340 (1908) MathSciNetGoogle Scholar
  3. 87.
    Ogura, K.: Note on W-curves. Tokyo Math. Ges. 5(2), 128–132 (1909) Google Scholar
  4. 88.
    Ogura, K.: Some applications of Lie’s transformation by which null-lines in space become circles on a plane. Tokyo Math. Ges. 5(2), 133–137 (1909) Google Scholar
  5. 89.
    Ogura, K.: On the spherical reciprocation in space of n dimensions. Tokyo Math. Ges. 5(2), 182–187 (1909) Google Scholar
  6. 90.
    Ogura, K.: Some problems of closure. Tokyo Math. Ges. 5(2), 202–211 (1910) Google Scholar
  7. 91.
    Ogura, K.: On the extreme of a function. Tokyo Math. Ges. 5(2), 358–360 (1910) Google Scholar
  8. 92.
    Ogura, K.: On the calculus of generalisation. Tokyo Math. Ges. 5(2), 360–370 (1910) Google Scholar
  9. 93.
    Ogura, K.: On euclidean image of non-euclidean geometry. Tokyo Math. Ges. 6(2), 158–161 (1911) (in English, Japanese) Google Scholar
  10. 94.
    Ogura, K.: Note on Cauchy’s condensation test for convergence of series of positive terms. Tôhoku Math. J. 1, 64–76 (1911/1912) zbMATHGoogle Scholar
  11. 95.
    Ogura, K.: Note on the representation of an arbitrary function in mathematical physics. Tôhoku Math. J. 1, 120–135 (1911/1912) Google Scholar
  12. 96.
    Ogura, K.: On the summability of series of Sturm-Liouville’s functions. Tôhoku Math. J. 1, 136–139 (1911/1912) Google Scholar
  13. 97.
    Ogura, K.: Note on Stewart’s and Luchterhandt’s theorems. Tôhoku Math. J. 2, 152–155 (1912) zbMATHGoogle Scholar
  14. 98.
    Ogura, K.: Note on the binomial series. Am. Math. Mon. 19(4), 68–70 (1912) MathSciNetzbMATHGoogle Scholar
  15. 99.
    Ogura, K.: On the Lorentz transformation with some geometrical interpretations. Tôhoku Univ. Sci. Rep. 2, 95–116 (1913) Google Scholar
  16. 100.
    Ogura, K.: Some theorems in the geometry of oriented circles in a plane. Tôhoku Math. J. 3, 104–109 (1913) zbMATHGoogle Scholar
  17. 101.
    Ogura, K.: Note on the integral curves of Pfaff’s equation. Tôhoku Math. J. 4, 10–15 (1913/1914) zbMATHGoogle Scholar
  18. 102.
    Ogura, K.: Invariant cubics for isogonal transformation in the geometry of the triangle. Tôhoku Math. J. 4, 132–137 (1913/1914) zbMATHGoogle Scholar
  19. 103.
    Ogura, K.: Trajectories in the conservative field of force, part I. Tôhoku Math. J. 7, 123–186 (1915) Google Scholar
  20. 104.
    Ogura, K.: On the integral curves of ordinary differential equations of the second order of a certain type. Tôhoku Math. J. 8, 93–107 (1915) zbMATHGoogle Scholar
  21. 105.
    Ogura, K.: Trajectories in the conservative field of force, part II. Tôhoku Math. J. 8, 187–203 (1915) Google Scholar
  22. 106.
    Ogura, K.: On a certain system of a doubly infinite curves on a surface. Tôhoku Math. J. 8, 213–217 (1915) Google Scholar
  23. 107.
    Ogura, K.: On the T-system on a surface. Tôhoku Math. J. 9, 88–101 (1916) zbMATHGoogle Scholar
  24. 108.
    Ogura, K.: Trajectories in the conservative field of force, part II. Tôhoku Math. J. 9, 134–147 (1916) zbMATHGoogle Scholar
  25. 109.
    Ogura, K.: On the differential geometry of inversion. Tôhoku Math. J. 9, 216–223 (1916) zbMATHGoogle Scholar
  26. 110.
    Ogura, K.: Notes on the representation of surfaces. Tôhoku Math. J. 10, 87–98 (1916) zbMATHGoogle Scholar
  27. 111.
    Ogura, K.: On the automecoic curves of two surfaces. Tôhoku Math. J. 10, 155–163 (1916) zbMATHGoogle Scholar
  28. 112.
    Ogura, K.: Some theorems concerning binary quadratic forms. Tôhoku Sci. Rep. 5, 95–106 (1916) (in English, Japanese) zbMATHGoogle Scholar
  29. 113.
    Ogura, K.: On the differential geometry of a line congruence. Tôhoku Sci. Rep. 5, 107–120 (1916) (in English, Japanese) zbMATHGoogle Scholar
  30. 114.
    Ogura, K.: On the striped net of curves without ambages in dynamics. Tôkyo Math. Ges. 9(2), 284–304 (1916/1918) (in English, Japanese) Google Scholar
  31. 115.
    Ogura, K.: On a generalization of the Bonnet-Darboux theorem concerning the line of striction. Tôkyo Math. Ges. 9(2), 304–309 (1916/1918) (in English, Japanese) Google Scholar
  32. 116.
    Ogura, K.: Note supplementary to the paper “On the striped net of curves without ambages in dynamics”. Tôkyo Math. Ges. 9(2), 409–412 (1916/1918) (in English, Japanese) Google Scholar
  33. 117.
    Ogura, K.: Geometry of the field of central force. Tôhoku Math. J. 11, 38–54 (1917) zbMATHGoogle Scholar
  34. 118.
    Ogura, K.: On the theory of representation of surfaces. Tôhoku Math. J. 12, 237–274 (1917) zbMATHGoogle Scholar
  35. 119.
    Ogura, K.: A geometrical study of the mechanics of a particle. Tôhoku Math. J. 13, 172–204 (1918) zbMATHGoogle Scholar
  36. 120.
    Ogura, K.: Binary forms and duality. Tôhoku Math. J. 13, 290–295 (1918) zbMATHGoogle Scholar
  37. 121.
    Ogura, K.: Theory of the point-line connex (1,1) in space, I. Tôhoku Math. J. 14, 28–63 (1918) zbMATHGoogle Scholar
  38. 122.
    Ogura, K.: A generalized Pascal theorem on a space cubic. Tôhoku Math. J. 14, 124–126 (1918) zbMATHGoogle Scholar
  39. 123.
    Ogura, K.: On integral inequalities between two systems of orthogonal functions. Tôhoku Math. J. 14, 152–154 (1918) zbMATHGoogle Scholar
  40. 124.
    Ogura, K.: Determination of the central forces acting on a particle whose equations of motion possess an integral quadratic in the velocities. Tôhoku Math. J. 14, 155–160 (1918) zbMATHGoogle Scholar
  41. 125.
    Ogura, K.: On the Fourier constants. Tôhoku Math. J. 14, 284–296 (1918) zbMATHGoogle Scholar
  42. 126.
    Ogura, K.: On certain mean curves defined by the series of orthogonal functions. Tôhoku Math. J. 15, 172–180 (1919) zbMATHGoogle Scholar
  43. 127.
    Ogura, K.: A remark on the dynamical system with two degrees of freedom. Tôhoku Math. J. 15, 181–183 (1919) zbMATHGoogle Scholar
  44. 128.
    Ogura, K.: On the sign and magnitude of the coefficients in the Fourier series, the sine series and the cosine series. Tôhoku Math. J. 15, 246–260 (1919) zbMATHGoogle Scholar
  45. 129.
    Ogura, K.: Trajectories in the irreversible field of force on a surface. Tôhoku Math. J. 15, 261–277 (1919) zbMATHGoogle Scholar
  46. 130.
    Ogura, K.: On special systems of linear equations having infinite unknowns. Tôhoku Math. J. 16, 99–102 (1919) zbMATHGoogle Scholar
  47. 131.
    Ogura, K.: On the theory of approximating functions with applications to geometry, law of errors and conduction of heat. Tôhoku Math. J. 16, 103–154 (1919) zbMATHGoogle Scholar
  48. 132.
    Ogura, K.: On the theory of Stäckel curvature. Tôhoku Math. J. 16, 270–290 (1919) zbMATHGoogle Scholar
  49. 133.
    Ogura, K.: On the conservative field of force. Tôhoku Math. J. 17, 1–6 (1920) zbMATHGoogle Scholar
  50. 134.
    Ogura, K.: On a certain transcendetal integral function in the theory of interpolation. Tôhoku Math. J. 17, 64–72 (1920) zbMATHGoogle Scholar
  51. 135.
    Ogura, K.: On the theory of interpolation. Tôhoku Math. J. 17, 129–145 (1920) zbMATHGoogle Scholar
  52. 136.
    Ogura, K.: On some central difference formulas of interpolation. Tôhoku Math. J. 17, 232–241 (1920) zbMATHGoogle Scholar
  53. 137.
    Ogura, K.: On the theory of the tides. Tôhoku Math. J. 17, 242–250 (1920) zbMATHGoogle Scholar
  54. 138.
    Ogura, K.: Generalization of Bessel’s and Gram’s inequalities and the elliptic space of infinitely many dimensions. Tôhoku Math. J. 18, 1–22 (1920) zbMATHGoogle Scholar
  55. 139.
    Ogura, K.: On the interpolation by means of orthogonal sets. Tôhoku Math. J. 18, 49–60 (1920) zbMATHGoogle Scholar
  56. 140.
    Ogura, K.: On the interpolation by Legendre polynomials. Tôhoku Math. J. 18, 61–74 (1920) zbMATHGoogle Scholar
  57. 141.
    Ogura, K.: Sur la théorie d’interpolation. In: Villat, H. (ed.) Comptes Rendus du Congrès International des Mathématiciens, Strasbourg 1920, pp. 316–322. Toulouse (1921) Google Scholar
  58. 142.
    Ogura, K.: Sur le mouvement d’une particule dans le champ d’un noyau chargé. C. R. 173, 348–350 (1921) Google Scholar
  59. 143.
    Ogura, K.: Sur le mouvement d’une particule dans le champ d’un noyau chargé. C. R. 173, 407–408 (1921). Google Scholar
  60. 144.
    Ogura, K.: Sur le champ statique de gravitation dans l’espace vide. C. R 173, 521–524 (1921) zbMATHGoogle Scholar
  61. 145.
    Ogura, K.: Sur la courbure des rayons lumineux dans le champ de gravitation. C. R. 173, 641–644 (1921) Google Scholar
  62. 146.
    Ogura, K.: Extension d’un théorème de Liouville au champ de gravitation. C. R. 173, 766–768 (1921) Google Scholar
  63. 147.
    Ogura, K.: Sur la théorie de la gravitation dans l’espace à deux dimensions. C. R. 173, 909–911 (1921) zbMATHGoogle Scholar
  64. 148.
    Ogura, K.: Sur la théorie de l’interpolation de Stirling et les zéros des fonctions entières. Darboux Bull. 45, 31–40 (1921) Google Scholar
  65. 149.
    Ogura, K.: Interaction of physics and geometry. Chuto Kyouiku-gakkai Zassi 4, 131–140 (1922) (J. Middle School Educ.) Google Scholar
  66. 150.
    Ogura, K.: Graphical Calculations and Nomograms. Sankaido, Tokyo (1923) (in Japanese) Google Scholar
  67. 151.
    Ogura, K.: Sur le champ de gravitation dans l’espace vide. Tôhoku Math. J. 22, 14–37 (1923) Google Scholar
  68. 152.
    Ogura, K.: Fundamental problems of education. In: Collected Works Ogura Kinnosuke Tyosakusyu, vol. 3. Keiso Syobo, Tokyo (1924) Google Scholar
  69. 153.
    Ogura, K.: Sur le mouvement d’une particule dans le champ d’un noyau chargé. Jpn. Phys.-Math. Proc. 6, 103–112 (1924) (in French, Japanese) Google Scholar
  70. 154.
    Ogura, K.: History of the Mathematical Education, vol. I, with Numerous Reproductions of Portraits and Facsimiles, pp. 370. Tokyo (1932) (in Japanese) Google Scholar
  71. 155.
    Ogura, K.: Studies in the History of Mathematics, p. x+340. Iwanami Shoten, Tokyo (1935) (in Japanese) zbMATHGoogle Scholar
  72. 156.
    Ogura, K.: Decline of the Japanese native mathematics of the feudal period. Kaizo 20, 107–121 (1938) Google Scholar
  73. 157.
    Ogura, K.: Unique features of Japanese mathematics. Chuo Koron 53, 31–47 (1938) Google Scholar
  74. 158.
    Ogura, K.: Reminiscences of a mathematician. In: Collected Works Ogura Kinnosuke Tyosakusyu, vol. 8, pp. 151–344. Keiso Syobo, Tokyo (1949) Google Scholar
  75. 159.
    Ogura, K.: Collected Works Ogura Kinnosuke Tyosakusyu, vol. 8. Keiso Syobo, Tokyo (1973/1975) Google Scholar
  76. 160.
    Plancherel, M., Ogura, K.: Remarks on the note “On the Fourier constants”. Tôhoku Math. J. 17, 123–128 (1920) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. L. Butzer
    • 1
  • P. J. S. G. Ferreira
    • 2
  • J. R. Higgins
    • 3
  • S. Saitoh
    • 4
  • G. Schmeisser
    • 5
  • R. L. Stens
    • 1
    Email author
  1. 1.Lehrstuhl A für MathematikRWTH Aachen UniversityAachenGermany
  2. 2.IEETA/DETIUniversidade de AveiroAveiroPortugal
  3. 3.I.H.P.MontclarFrance
  4. 4.Department of MathematicsUniversity of AveiroAveiroPortugal
  5. 5.Department of MathematicsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations