Journal of Fourier Analysis and Applications

, Volume 17, Issue 1, pp 1–35 | Cite as

Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators

  • Renjin Jiang
  • Dachun Yang


Let L be a linear operator in L 2(ℝ n ) and generate an analytic semigroup {e tL }t≥0 with kernels satisfying an upper bound of Poisson type, whose decay is measured by θ(L)∈(0,∞]. Let ω on (0,∞) be of upper type 1 and of critical lower type \(\widetilde{p}_{0}(\omega)\in(n/(n+\theta(L)),1]\) and ρ(t)=t −1/ω −1(t −1) for t∈(0,∞). In this paper, the authors first introduce the VMO-type space VMOρ,L(ℝ n ) and the tent space \(T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})\) and characterize the space VMOρ,L(ℝ n ) via the space \(T^{\infty}_{\omega,\mathrm{v}}({{\mathbb{R}}}^{n+1}_{+})\). Let \(\widetilde{T}_{\omega}({{\mathbb{R}}}^{n+1}_{+})\) be the Banach completion of the tent space \(T_{\omega}({\mathbb{R}}^{n+1}_{+})\). The authors then prove that \(\widetilde{T}_{\omega}({\mathbb{R}}^{n+1}_{+})\) is the dual space of \(T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})\). As an application of this, the authors finally show that the dual space of \(\mathrm{VMO}_{\rho,L^{\ast}}({\mathbb{R}}^{n})\) is the space B ω,L(ℝ n ), where L * denotes the adjoint operator of L in L 2(ℝ n ) and B ω,L(ℝ n ) the Banach completion of the Orlicz-Hardy space H ω,L(ℝ n ). These results generalize the known recent results by particularly taking ω(t)=t for t∈(0,∞).


Operator Orlicz function Orlicz-Hardy space VMO Predual space Banach completion Tent space Molecule 

Mathematics Subject Classification (2000)

42B35 42B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of ℝn. J. Funct. Anal. 201, 148–184 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. Astérisque 249, 1–172 (1998) Google Scholar
  3. 3.
    Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished manuscript (2005) Google Scholar
  4. 4.
    Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blunck, S., Kunstmann, P.C.: Weak type (p,p) estimates for Riesz transforms. Math. Z. 247, 137–148 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Coulhon, T., Duong, X.T.: Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss. Adv. Differ. Equ. 5, 343–368 (2000) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge (1989) zbMATHCrossRefGoogle Scholar
  10. 10.
    Deng, D., Duong, X.T., Yan, L.: A characterization of the Morrey-Campanato spaces. Math. Z. 250, 641–655 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Deng, D., Duong, X.T., Sikora, A., Yan, L.: Comparison of the classical BMO with the BMO spaces associated with operators and applications. Rev. Mat. Iberoam. 24, 267–296 (2008) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Deng, D., Duong, X.T., Song, L., Tan, C., Yan, L.: Functions of vanishing mean oscillation associated with operators and applications. Mich. Math. J. 56, 529–550 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley Classics Library. Wiley-Interscience, New York (1988). Reprint of the 1958 original Google Scholar
  14. 14.
    Duong, X.T., McIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam. 15, 233–265 (1999) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Duong, X.T., Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Duong, X.T., Yan, L.: New Morrey-Campanato spaces associated with operators and applications. Unpublished manuscript (2006) Google Scholar
  18. 18.
    Duong, X.T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13, 87–111 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Harboure, E., Salinas, O., Viviani, B.: A look at BMOφ(ω) through Carleson measures. J. Fourier Anal. Appl. 13, 267–284 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47, 959–982 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jiang, R., Yang, D., Zhou, Y.: Orlicz-Hardy spaces associated with operators. Sci. China Ser. A 52, 1042–1080 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    McIntosh, A.: Operators which have an H functional calculus. In: Mini Conference on Operator Theory and Partial Differential Equations. Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, 210–231. Australian National Univ., Canberra (1986) Google Scholar
  24. 24.
    Ouhabaz, E.M.: Analysis of heat equations on domains. London Math. Soc. Monogr., vol. 31. Princeton Univ. Press, Princeton (2004) Google Scholar
  25. 25.
    Peng, L.: The dual spaces of λ α(ℝn). Thesis in Peking Univ., Beijing, 1981 Google Scholar
  26. 26.
    Sarason, D.: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Viviani, B.E.: An atomic decomposition of the predual of BMO(ρ). Rev. Mat. Iberoam. 3, 401–425 (1987) zbMATHMathSciNetGoogle Scholar
  28. 28.
    Wang, W.: The predual spaces of tent spaces and some characterizations of λ α(ℝn) spaces. Beijing Daxue Xuebao 24, 535–551 (1988) zbMATHMathSciNetGoogle Scholar
  29. 29.
    Yan, L.: Littlewood-Paley functions associated to second order elliptic operators. Math. Z. 246, 655–666 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008) zbMATHCrossRefGoogle Scholar
  31. 31.
    Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1978) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of EducationBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations