Journal of Fourier Analysis and Applications

, Volume 16, Issue 2, pp 294–310 | Cite as

On the Wave Equation Associated to the Hermite and the Twisted Laplacian

  • Piero D’AnconaEmail author
  • Vittoria Pierfelice
  • Fulvio Ricci


The dispersive properties of the wave equation u tt +Au=0 are considered, where A is either the Hermite operator −Δ+|x|2 or the twisted Laplacian −( x iy)2/2−( y +ix)2/2. In both cases we prove optimal L 1L dispersive estimates. More generally, we give some partial results concerning the flows exp (itL ν ) associated to fractional powers of the twisted Laplacian for 0<ν<1.


Wave equation Strichartz estimates Decay estimates Dispersive equations Schrödinger equation Harmonic analysis Almost periodicity 

Mathematics Subject Classification (2000)

35L05 35Q40 58J45 11K70 11L03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beals, R.: L p boundedness of Fourier integral operators. Mem. Am. Math. Soc. 38(264), 1–57 (1982) MathSciNetGoogle Scholar
  2. 2.
    Dziubański, J.: Triebel-Lizorkin spaces associated with Laguerre and Hermite expansions. Proc. Am. Math. Soc. 125(12), 3547–3554 (1997) zbMATHCrossRefGoogle Scholar
  3. 3.
    Epperson, J.: Triebel-Lizorkin spaces for Hermite expansions. Studia Math. 114(1), 87–103 (1995) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vols. I, II. McGraw-Hill, New York (1953). Based, in part, on notes left by Harry Bateman Google Scholar
  5. 5.
    Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2(4), 309–327 (1985) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Hardy, G.H., Riesz, M.: The General Theory of Dirichlet Series. Cambridge University Press, London (1915) Google Scholar
  7. 7.
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Koch, H., Ricci, F.: Spectral projections for the twisted Laplacian. Studia Math. 180(2), 103–110 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Koch, H., Tataru, D.: L p eigenfunction bounds for the Hermite operator. Duke Math. J. 128(2), 369–392 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Miyachi, A.: On some estimates for the wave equation in L p and H p. J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 27(2), 331–354 (1980) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Müller, D., Ricci, F.: Analysis of second order differential operators on Heisenberg groups. I. Invent. Math. 101(3), 545–582 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Müller, D., Seeger, A.: Sharp l p-estimates for the wave equation on Heisenberg type groups. (2008, in preparation) Google Scholar
  13. 13.
    Müller, D., Stein, E.M.: L p-estimates for the wave equation on the Heisenberg group. Rev. Mat. Iberoam. 15(2), 297–334 (1999) zbMATHGoogle Scholar
  14. 14.
    Ólafsson, G., Zheng, S.: Function spaces associated with Schrödinger operators: the Pöschl-Teller potential. J. Fourier Anal. Appl. 12(6), 653–674 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Peral, J.C.: L p estimates for the wave equation. J. Funct. Anal. 36(1), 114–145 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math. (2) 134(2), 231–251 (1991) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Shatah, J., Struwe, M.: Geometric Wave Equations. Courant Lecture Notes in Mathematics, vol. 2. New York University Courant Institute of Mathematical Sciences, New York (1998) zbMATHGoogle Scholar
  18. 18.
    Thangavelu, S.: Riesz transforms and the wave equation for the Hermite operator. Commun. Part. Differ. Equ. 15(8), 1199–1215 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Thangavelu, S.: Harmonic Analysis on the Heisenberg Group. Progress in Mathematics, vol. 159. Birkhäuser, Boston (1998) zbMATHGoogle Scholar
  20. 20.
    Tie, J., Wong, M.W.: Wave kernels of the twisted Laplacian. In: Modern Trends in Pseudo-Differential Operators. Oper. Theory Adv. Appl., vol. 172, pp. 107–115. Birkhäuser, Basel (2007) CrossRefGoogle Scholar
  21. 21.
    Yajima, K.: Schrödinger evolution equations with magnetic fields. J. Anal. Math. 56, 29–76 (1991) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  • Piero D’Ancona
    • 1
    Email author
  • Vittoria Pierfelice
    • 2
  • Fulvio Ricci
    • 3
  1. 1.Dipartimento di MatematicaUnversità di Roma “La Sapienza”RomeItaly
  2. 2.Bâtiment de MatématiquesUnversité d’OrléansOrléans Cedex 2France
  3. 3.Classe di ScienzeScuola Normale SuperiorePisaItaly

Personalised recommendations