Advertisement

Multivariate F-splines and Fractional Box Splines

  • Zhiqiang Xu
Article

Abstract

We introduce multivariate F-splines, including multivariate F-truncated powers T f (⋅|M) and F-box splines B f (⋅|M). The classical multivariate polynomial splines and multivariate E-splines can be considered as a special case of multivariate F-splines. We document the main properties of T f (⋅|M) and B f (⋅|M). Using T f (⋅|M), we extend fractional B-splines to fractional box splines and show that these functions satisfy most of the properties of the traditional box splines.

Our work unifies and generalizes results due to Dahmen-Micchelli, de Boor-Höllig, Ron and Unser-Blu, and also presents a new tool for computing the integration over polytopes.

Keywords

Box splines Multivariate truncated powers Fractional B-splines 

Mathematics Subject Classification (2000)

41A15 65D07 42C40 

References

  1. 1.
    de Boor, C., Höllig, K.: B-splines from parallelepipeds. J. Anal. Math. 42, 99–115 (1983) zbMATHCrossRefGoogle Scholar
  2. 2.
    de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, New York (1993) zbMATHGoogle Scholar
  3. 3.
    Dahmen, W.: On multivariate B-splines. SIAM J. Numer. Anal. 17, 179–191 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dahmen, W., Micchelli, C.A.: On multivariate E-splines. Adv. Math. 76, 33–93 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lasserre, J.B.: Integration on a convex polytope. Proc. Am. Math. Soc. 126, 2433–2441 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lasserre, J.B., Avrachenkov, K.E.: The multi-dimensional version of ab x p dx. Am. Math. Mon. 108, 151–154 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Micchelli, C.A.: On a numerically efficient method for computing multivariate B-splines. In: Schempp, W., Zeller, K. (eds.) Multivariate Approximation Theory, pp. 211–248. Birkhäuser, Basel (1979) Google Scholar
  8. 8.
    Ron, A.: Exponential box splines. Constr. Approx. 4, 357–378 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Rev. 42, 43–67 (2000) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.LSEC, Inst. Comp. Math., Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations