Journal of Fourier Analysis and Applications

, Volume 15, Issue 4, pp 437–440

Comments on the Randomized Kaczmarz Method

Article
  • 195 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cenker, C., Feichtinger, H.G., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In: Proc. SPIE: Visual Communications and Image Processing, pp. 299–310 (1992) Google Scholar
  2. 2.
    Feichtinger, H.G., Gröchenig, K.H.: Theory and practice of irregular sampling. In: Benedetto, J., Frazier, M. (eds.) Wavelets: Mathematics and Applications, pp. 305–363. CRC Press, Boca Raton (1994) Google Scholar
  3. 3.
    Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Tran. Med. Imaging 12(3), 600–609 (1993) CrossRefGoogle Scholar
  4. 4.
    Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986) MATHGoogle Scholar
  5. 5.
    Shapiro, A.: Optimality bounds for diagonal scaling. Numer. Math. 14, 14–23 (1969) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(1), 262–278 (2009) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations