Journal of Fourier Analysis and Applications

, Volume 15, Issue 4, pp 437–440

Comments on the Randomized Kaczmarz Method



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cenker, C., Feichtinger, H.G., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In: Proc. SPIE: Visual Communications and Image Processing, pp. 299–310 (1992) Google Scholar
  2. 2.
    Feichtinger, H.G., Gröchenig, K.H.: Theory and practice of irregular sampling. In: Benedetto, J., Frazier, M. (eds.) Wavelets: Mathematics and Applications, pp. 305–363. CRC Press, Boca Raton (1994) Google Scholar
  3. 3.
    Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Tran. Med. Imaging 12(3), 600–609 (1993) CrossRefGoogle Scholar
  4. 4.
    Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986) MATHGoogle Scholar
  5. 5.
    Shapiro, A.: Optimality bounds for diagonal scaling. Numer. Math. 14, 14–23 (1969) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(1), 262–278 (2009) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations