Journal of Fourier Analysis and Applications

, Volume 16, Issue 1, pp 17–33

Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth



Using a few basics from integration theory, a short proof of nowhere-differentiability of Weierstrass functions is given. Restated in terms of the Fourier transformation, the method consists in principle of a second microlocalisation, which is used to derive two general results on existence of nowhere differentiable functions. Examples are given in which the frequencies are of polynomial growth and of almost quadratic growth as a borderline case.


Nowhere-differentiability Weierstrass function Lacunary Fourier series Second microlocalisation 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baouche, A., Dubuc, S.: La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992) MATHMathSciNetGoogle Scholar
  2. 2.
    Chamizo, F., Ubis, A.: Some Fourier series with gaps. J. Anal. Math. 101, 179–197 (2007) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duistermaat, J.J.: Self-similarity of “Riemann’s nondifferentiable function”. Nieuw Arch. Wiskd. (4) 9(3), 303–337 (1991) MATHMathSciNetGoogle Scholar
  4. 4.
    Freud, G.: Über trigonometrische Approximation und Fouriersche Reihen. Math. Z. 78, 252–262 (1962) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hardy, G.H.: Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17(3), 301–325 (1916) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Holschneider, M.: Wavelets: An Analysis Tool. Oxford Mathematical Monographs. Oxford University Press, London (1995) MATHGoogle Scholar
  7. 7.
    Hykšová, M.: Bolzano’s inheritance research in Bohemia. In: Mathematics Throughout the Ages, Holbæk, 1999/Brno, 2000. Děj. Mat./Hist. Math., vol. 17, pp. 67–91. Prometheus, Prague (2001) Google Scholar
  8. 8.
    Jaffard, S.: Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3, 1–22 (1997) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnsen, J.: Type 1,1-operators defined by vanishing frequency modulation. In: Rodino, L., Wong, M.W. (eds.) New Developments in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 189, pp. 201–246. Birkhäuser, Basel (2008) CrossRefGoogle Scholar
  10. 10.
    Lebesgue, H.: Sur la méthode de M. Goursat pour la résolution de l’équation de Fredholm. Bull. Soc. Math. Fr. 36, 3–19 (1908) MATHMathSciNetGoogle Scholar
  11. 11.
    Luther, W.: The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McCarthy, J.: An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Philadelphia (1993) MATHGoogle Scholar
  14. 14.
    Richards, I., Youn, H.: Theory of Distributions. A Nontechnical Introduction. Cambridge University Press, Cambridge (1990) Google Scholar
  15. 15.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966). Revised and enlarged edn. MATHGoogle Scholar
  16. 16.
    Stein, E.M., Shakarchi, R.: Fourier Analysis. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003) MATHGoogle Scholar
  17. 17.
    Takagi, T.: A simple example of the continous function without derivative. Proc. Phys.-Math. Soc. Jpn. 1, 176–177 (1903) Google Scholar
  18. 18.
    Takagi, T.: The Collected Papers of Teiji Takagi, pp. 5–6. Iwanami Shoteu, Tokyo (1973). S. Kuroda (ed.) Google Scholar
  19. 19.
    Thim, J.: Continuous nowhere differentiable functions. Master’s Thesis, Luleå University of Technology, Sweden (2003) Google Scholar
  20. 20.
    Wen, L.: A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002) MATHCrossRefGoogle Scholar
  21. 21.
    Zygmund, A.: Trigonometric Series, 2nd edn., vols. I, II. Cambridge University Press, Cambridge (1959) MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAalborg UniversityAalborg ØstDenmark

Personalised recommendations