Skip to main content
Log in

Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Using a few basics from integration theory, a short proof of nowhere-differentiability of Weierstrass functions is given. Restated in terms of the Fourier transformation, the method consists in principle of a second microlocalisation, which is used to derive two general results on existence of nowhere differentiable functions. Examples are given in which the frequencies are of polynomial growth and of almost quadratic growth as a borderline case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baouche, A., Dubuc, S.: La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Chamizo, F., Ubis, A.: Some Fourier series with gaps. J. Anal. Math. 101, 179–197 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duistermaat, J.J.: Self-similarity of “Riemann’s nondifferentiable function”. Nieuw Arch. Wiskd. (4) 9(3), 303–337 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Freud, G.: Über trigonometrische Approximation und Fouriersche Reihen. Math. Z. 78, 252–262 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hardy, G.H.: Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17(3), 301–325 (1916)

    Article  MATH  MathSciNet  Google Scholar 

  6. Holschneider, M.: Wavelets: An Analysis Tool. Oxford Mathematical Monographs. Oxford University Press, London (1995)

    MATH  Google Scholar 

  7. Hykšová, M.: Bolzano’s inheritance research in Bohemia. In: Mathematics Throughout the Ages, Holbæk, 1999/Brno, 2000. Děj. Mat./Hist. Math., vol. 17, pp. 67–91. Prometheus, Prague (2001)

    Google Scholar 

  8. Jaffard, S.: Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johnsen, J.: Type 1,1-operators defined by vanishing frequency modulation. In: Rodino, L., Wong, M.W. (eds.) New Developments in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 189, pp. 201–246. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  10. Lebesgue, H.: Sur la méthode de M. Goursat pour la résolution de l’équation de Fredholm. Bull. Soc. Math. Fr. 36, 3–19 (1908)

    MATH  MathSciNet  Google Scholar 

  11. Luther, W.: The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. McCarthy, J.: An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)

    Article  MathSciNet  Google Scholar 

  13. Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  14. Richards, I., Youn, H.: Theory of Distributions. A Nontechnical Introduction. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  15. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966). Revised and enlarged edn.

    MATH  Google Scholar 

  16. Stein, E.M., Shakarchi, R.: Fourier Analysis. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  17. Takagi, T.: A simple example of the continous function without derivative. Proc. Phys.-Math. Soc. Jpn. 1, 176–177 (1903)

    Google Scholar 

  18. Takagi, T.: The Collected Papers of Teiji Takagi, pp. 5–6. Iwanami Shoteu, Tokyo (1973). S. Kuroda (ed.)

    Google Scholar 

  19. Thim, J.: Continuous nowhere differentiable functions. Master’s Thesis, Luleå University of Technology, Sweden (2003)

  20. Wen, L.: A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002)

    Article  MATH  Google Scholar 

  21. Zygmund, A.: Trigonometric Series, 2nd edn., vols. I, II. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Johnsen.

Additional information

Communicated by David Walnut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, J. Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth. J Fourier Anal Appl 16, 17–33 (2010). https://doi.org/10.1007/s00041-009-9072-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-009-9072-2

Keywords

Mathematics Subject Classification (2000)

Navigation