Journal of Fourier Analysis and Applications

, Volume 15, Issue 2, pp 218–261 | Cite as

Weighted Norm Inequalities for Paraproducts and Bilinear Pseudodifferential Operators with Mild Regularity

Article

Abstract

We establish boundedness properties on products of weighted Lebesgue, Hardy, and amalgam spaces of certain paraproducts and bilinear pseudodifferential operators with mild regularity. We do so by showing that these operators can be realized as generalized bilinear Calderón–Zygmund operators.

Keywords

Paraproducts Bilinear pseudodifferential operators Bilinear Calderón–Zygmund operators 

Mathematics Subject Classification (2000)

42B25 42B20 47G30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bényi, Á.: Bilinear singular integrals and pseudodifferential operators. Ph.D. Thesis, University of Kansas (2002) Google Scholar
  2. 2.
    Bényi, Á.: Bilinear pseudodifferential operators on Lipschitz and Besov spaces. J. Math. Anal. Appl. 284, 97–103 (2003) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bényi, Á., Maldonado D., Nahmod, A., Torres, R.: Bilinear paraproducts revisited. Math. Nachr. (2008, to appear) Google Scholar
  4. 4.
    Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Commun. Partial Differ. Equ. 28, 1161–1181 (2003) MATHCrossRefGoogle Scholar
  5. 5.
    Bényi, Á., Torres, R.H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett. 11.1, 1–12 (2004) Google Scholar
  6. 6.
    Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires. Ann. Sci. Ec. Norm. Super. Ser. 4 14(2), 209–246 (1981) MATHMathSciNetGoogle Scholar
  7. 7.
    Bourdaud, G.: L p-estimates for certain non-regular pseudo-differential operators. Commun. Partial Differ. Equ. 7(9), 1023–1033 (1982) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cannone, M.: Ondelettes, Paraproduits et Navier–Stokes. Diderot, Paris (1995). (French) [Wavelets, paraproducts and Navier–Stokes] MATHGoogle Scholar
  9. 9.
    Cannone, M.: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004) Google Scholar
  10. 10.
    Ching, C.-H.: Pseudo-differential operators with non-regular symbols. J. Differ. Equ. 11, 436–447 (1972) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coifman, R.R., Dobyinsky, S., Meyer, Y.: Opérateurs bilinéaires et renormalization. In: Stein, M., Fefferman, C., Fefferman, R., Wainger, S. (eds.) Essays on Fourier Analysis in Honor of Elias. Princeton University Press, Princeton (1995) Google Scholar
  12. 12.
    Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993) MATHMathSciNetGoogle Scholar
  13. 13.
    Coifman, R.R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier 28(3), 177–202 (1978) MATHMathSciNetGoogle Scholar
  14. 14.
    Coifman, R.R., Meyer, Y.: Au-delà des Opérateurs Pseudo-Différentiels, 2nd edn. Astèrisque, vol. 57 (1978) Google Scholar
  15. 15.
    Coifman, R.R., Meyer, Y.: Wavelets: Calderón–Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997) MATHGoogle Scholar
  16. 16.
    David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 120, 371–397 (1984) CrossRefGoogle Scholar
  17. 17.
    Fournier, J.F., Stewart, J.: Amalgams of L p and l q. Bull. Am. Math. Soc. (New Series) 13(1), 1–21 (1985) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–169 (1990) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79 (1991) Google Scholar
  20. 20.
    García-Cuerva, J., Kazarian, K.: Calderón–Zygmund operators and unconditional bases of weighted Hardy spaces. Stud. Math. 109(3), 255–276 (1994) MATHGoogle Scholar
  21. 21.
    Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols, I. J. Fourier Anal. Appl. 5, 435–467 (2001) MathSciNetGoogle Scholar
  22. 22.
    Gilbert, J., Nahmod, A.: L p-boundedness of time-frequency paraproducts, II. J. Fourier Anal. Appl. 8, 109–172 (2002) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52, 169–179 (2001) MATHMathSciNetGoogle Scholar
  24. 24.
    Grafakos, L., Kalton, N.: The Marcinkiewicz multiplier condition for bilinear operators. Stud. Math. 146(2), 115–156 (2001) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Grafakos, L., Torres, R.H.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51(5), 1261–1276 (2002) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Journè, J.-L.: Calderón–Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983) MATHGoogle Scholar
  28. 28.
    Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999). Erratum in Math. Res. Lett. 6(3–4), 467 (1999) MATHMathSciNetGoogle Scholar
  29. 29.
    Kikuchi, N., Nakai, E., Tomita, N., Yabuta, K., Yoneda, T.: Calderón–Zygmund operators on amalgam spaces and in the discrete case. J. Math. Anal. Appl. 335, 198–212 (2007) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lacey, M.: Commutators with Riesz potentials in one and several parameters. Hokkaido Math. J. 36(1), 175–191 (2007) MATHMathSciNetGoogle Scholar
  31. 31.
    Lacey, M., Metcalfe, J.: Paraproducts in one and several parameters. Forum Math. 19(2), 325–351 (2007) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lannes, D.: Sharp Estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232, 495–539 (2006) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Marschall, J.: Weighted L p-estimates for pseudo-differential operators with non-regular symbols. Z. Anal. Anwend. 10, 493–501 (1991) MATHMathSciNetGoogle Scholar
  34. 34.
    Marschall, J.: Non-regular pseudo-differential operators. Z. Anal. Anwend. 15, 109–148 (1996) MATHMathSciNetGoogle Scholar
  35. 35.
    Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers. J. Am. Math. Soc. 15, 469–496 (2002) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 193, 269–296 (2004) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Nagase, M.: The L p-boundedness of pseudo-differential equations with non-regular symbols. Commun. Partial Differ. Equ. 2(10), 1045–1061 (1977) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nishigaki, S.: Weighted norm inequalities for certain pseudo-differential operators. Tokyo J. Math. 7, 129–140 (1984) MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Petermichl, S.: Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbols. C. R. Acad. Sci. Paris Sèr. I Math. 330, 455–460 (2000) MATHMathSciNetGoogle Scholar
  40. 40.
    Sato, S.: A note on weighted estimates for certain classes of pseudo-differential operators. Rocky Mt. J. Math. 35(1), 267–284 (2005) MATHCrossRefGoogle Scholar
  41. 41.
    Stefanov, A.: Pseudodifferential operators with rough symbols. Preprint Google Scholar
  42. 42.
    Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) MATHGoogle Scholar
  43. 43.
    Taylor, M.: Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, vol. 81. AMS, Providence (2000) MATHGoogle Scholar
  44. 44.
    Taylor, M.: Pseudodifferential operators and nonlinear PDE. Progress in Mathematics, vol. 100. Birkhäuser, Boston (1991) MATHGoogle Scholar
  45. 45.
    Thiele, C.: Wave Packet Analysis. CBMS Regional Conference Series in Mathematics, vol. 105 (2006) Google Scholar
  46. 46.
    Yabuta, K.: Generalizations of Calderón–Zygmund operators. Stud. Math. 82(1), 17–31 (1985) MATHMathSciNetGoogle Scholar
  47. 47.
    Yabuta, K.: Calderón–Zygmund operators and pseudodifferential operators. Commun. Partial Differ. Equ. 10(9), 1005–1022 (1985) MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Yabuta, K.: Weighted norm inequalities for pseudodifferential operators. Osaka J. Math. 23(3), 703–723 (1986) MATHMathSciNetGoogle Scholar
  49. 49.
    Youssif, A.: Bilinear operators and the Jacobian-determinant on Besov spaces. Indiana Univ. Math. J. 45, 381–396 (1996) MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Department of MathematicsKansas State UniversityManhattanUSA

Personalised recommendations