Atomic Decomposition of Hardy Spaces Associated with Certain Laguerre Expansions

  • Jacek DziubańskiEmail author


Let L n a (x), n=0,1,…, be the Laguerre polynomials of order a>−1. Denote n a (x)=(n!/Γ(n+a+1))1/2 L n a (x)e x/2. Let
be the kernel of the semigroup {T t } t>0 associated with the system n a considered on ((0,∞),x a dx). We say that a function f belongs to the Hardy space H 1 associated with the semigroup if the maximal function
belongs to L 1((0,∞),x a dx). We prove a special atomic decomposition of the elements of the Hardy space.


Hardy spaces Maximal functions Laguerre expansions 

Mathematics Subject Classification (2000)

42B30 33C45 42B25 


  1. 1.
    Coifman, R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math., vol. 242. Springer, Berlin (1971) zbMATHGoogle Scholar
  2. 2.
    Dziubański, J.: Hardy spaces for Laguerre expansions. Constr. Approx. 27, 269–287 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dziubański, J., Zienkiewicz, J.: Hardy spaces associated with some Schrödinger operators. Studia Math. 126, 149–160 (1997) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dziubański, J., Zienkiewicz, J.: Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999) zbMATHGoogle Scholar
  5. 5.
    Dziubański, J., Zienkiewicz, J.: H p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics. Banach Center Publ., vol. 56, pp. 45–53. Inst. Math., Polish Acad. Sci., Warsaw (2002) Google Scholar
  6. 6.
    Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Macías, R., Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33, 271–309 (1979) zbMATHCrossRefGoogle Scholar
  8. 8.
    Macías, R., Segovia, C., Torrea, J.L.: Heat-diffusion maximal operators for Laguerre semigroups with negative parameters. J. Funct. Anal. 229, 300–316 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nowak, A.: Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted L p spaces. Studia Math. 158, 239–268 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nowak, A., Sjögren, P.: Weak type (1,1) estimates for maximal operators associated with various multi-dimensional systems of Laguerre functions. Indiana Univ. Math. J. 56, 417–436 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) zbMATHGoogle Scholar
  12. 12.
    Stempak, K.: Heat-diffusion and Poisson integrals for Laguerre expansions. Tohoku Math. J. 46, 83–104 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Szegö, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc. Colloq. Publ., vol. 23. AMS, Providence (1975) zbMATHGoogle Scholar
  14. 14.
    Uchiyama, A.: A maximal function characterization of H p on the space of homogeneous type. Trans. Am. Math. Soc. 262(2), 579–592 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966) zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WrocławWrocławPoland

Personalised recommendations