Advertisement

Journal of Fourier Analysis and Applications

, Volume 14, Issue 1, pp 102–123 | Cite as

Harmonic Analysis on a Galois Field and Its Subfields

  • A. Vourdas
Article

Abstract

Complex functions χ(m) where m belongs to a Galois field GF(p ), are considered. Fourier transforms, displacements in the GF(p GF(p ) phase space and symplectic transforms of these functions are studied. It is shown that the formalism inherits many features from the theory of Galois fields. For example, Frobenius transformations and Galois groups are introduced in the present context. The relationship between harmonic analysis on GF(p ) and harmonic analysis on its subfields, is studied.

Keywords

Phase space methods Heisenberg-Weyl group Galois fields 

Mathematics Subject Classification (2000)

81S30 42C30 13B05 12F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barut, A., Raczka, R.: Theory of Group Representations and Applications. Polish Sci., Warsaw (1977) Google Scholar
  2. 2.
    Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof of the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998) zbMATHGoogle Scholar
  4. 4.
    Colin, S., Corbett, J., Durt, T., Gross, D.: About SICPOVMs and discrete Wigner distributions. J. Opt. B Quantum Semiclass. Opt. 7, 778–785 (2005) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Durt, T.: About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A 38, 5267–5283 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fairlie, D.B., Fletcher, P., Zachos, C.K.: Infinite-dimensional algebras and a trigonometric basis for the classical Lie-algebras. J. Math. Phys. 31, 1088–1094 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Feichtinger, H.G., Hazewinkel, M., Kaiblinger, N., Matusiak, E., Neuhauser, M.: Metaplectic operators on C n. Preprint Google Scholar
  8. 8.
    Flornes, K., Grossmann, A., Holschneider, M., Torresani, B.: Wavelets on discrete fields. Appl. Comput. Harmon. Anal. 1, 137–146 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gibbons, K., Hoffman, M.J., Wootters, W.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101, 1–23 (2004), CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields. Oxford University Press, London (1979) zbMATHGoogle Scholar
  11. 11.
    Kibler, M.R.: A SU(2) recipe for mutually unbiased bases. Int. J. Mod. Phys. B 20, 1802–1807 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kibler, M.R.: Angular momentum and mutually unbiased bases. Int. J. Mod. Phys. B 20, 1792–1801 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976) zbMATHGoogle Scholar
  14. 14.
    Klimov, A., Sanchez-Soto, L., de Guise, H.: Multicomplementary operators via finite Fourier transform. J. Phys. A 38, 2747–2760 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Klimov, A., Sanchez-Soto, L., de Guise, H.: A complementarity based approach to phase in finite dimensional quantum systems. J. Opt. B Quantum Semiclass. Opt. 7, 283–287 (2005) CrossRefGoogle Scholar
  16. 16.
    Konyagin, S. V., Shparlinski, I. E.: Character Sums with Exponential Functions and Their Applications. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  17. 17.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997) Google Scholar
  18. 18.
    Mackey, G. W.: Induced Representations of Groups and Quantum Mechanics. Benjamin, Elmsford (1968) zbMATHGoogle Scholar
  19. 19.
    Neuhauser, M.: An explicit construction of the metaplectic representation over a finite field. J. Lie Theory 12, 15–30 (2002) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pittenger, A. O., Rubin, M. H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pittenger, A. O., Rubin, M. H.: Wigner functions and separability for finite systems. J. Phys. A 38, 6005–6036 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Romero, J. L., Bjork, G., Klimov, A. B., Sanchez-Soto, L. L.: Structure of sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 062310, 1–8 (2005) CrossRefGoogle Scholar
  23. 23.
    Saniga, M., Planat, M., Rosu, H.: Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclass. Opt. 6, 19–20 (2004) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Saniga, M., Planat, M.: Hjelmslev geometry of mutually unbiased bases. J. Phys. A 39, 435–440 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570–579 (1960) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schwinger, J.: Quantum Kinematics and Dynamics. Benjamin, Elmsford (1970) zbMATHGoogle Scholar
  27. 27.
    Tanaka, S.: On irreducible unitary representations of some special linear groups of the second order, I. Osaka J. Math. 3, 217–227 (1966) MathSciNetGoogle Scholar
  28. 28.
    Tanaka, S.: On irreducible unitary representations of some special linear groups of the second order, II. Osaka J. Math. 3, 229–242 (1966) Google Scholar
  29. 29.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1997) Google Scholar
  30. 30.
    Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267–320 (2004) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Vourdas, A.: Quantum systems with finite Hilbert space: Galois fields in quantum mechanics. J. Phys. A 40, R285–R331 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Vourdas, A.: Galois quantum systems. J. Phys. A 38, 8453–8471 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Vourdas, A.: The Frobenius formalism in Galois quantum systems. Acta Appl. Math. 93, 197–214 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Vourdas, A.: Galois quantum systems irreducible polynomials and Riemann surfaces. J. Math. Phys. 47, 092104, 1–15 (2006) CrossRefMathSciNetGoogle Scholar
  35. 35.
    Vourdas, A.: The angle-angular momentum quantum phase space. J. Phys. A 29, 4275–4288 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Vourdas, A.: Analytic representations in quantum mechanics. J. Phys. A 39, 65–141 (2006) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Vilenkin, N. J.: Special Functions and the Theory of Group Representations. Am. Math. Soc., Providence (1968) zbMATHGoogle Scholar
  38. 38.
    Weil, A.: Sur certains groupes d’operateurs unitaires. Acta Math. 111, 143–211 (1964) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Weyl, H.: Theory of Groups and Quantum Mechanics. Dover, New York (1950) Google Scholar
  40. 40.
    Wootters, W.: Wigner function formulation of finite state quantum mechanics. Ann. Phys. 176, 1–21 (1987) CrossRefMathSciNetGoogle Scholar
  41. 41.
    Wootters, W., Fields, B. D.: Optimal state determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Zelobenko, D. P.: Compact Lie Groups and Their Representations. Am. Math. Soc., Providence (1973) zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Department of ComputingUniversity of BradfordBradfordUK

Personalised recommendations