Advertisement

Colony fitness and garden growth in the asexual fungus-growing ant Mycocepurus smithii (Attini, Formicidae)

  • C.-C. FangEmail author
  • F.-H. Chang
  • P. Duong
  • J. Kurian
  • U. G. Mueller
Research Article

Abstract

Nest-founding in the fungus-growing ant Mycocepurus smithii is typically by single queens (monogyny) and colonies transition to multiple queens (polygyny) as they grow larger. Here, we study the transition from monogyny to polygyny of M. smithii under lab conditions. We hypothesize that the worker-to-queen ratio affects colony growth, fungus-garden growth, and colony survival. Monogyne colonies with small gardens (0.1 g) had greater garden growth than polygyne colonies, suggesting that monogyny may be the superior strategy for small colonies after initial nest establishment. In monogyne colonies with small gardens and either 30, 60, or 90 workers, colonies with 60 workers produced the largest gardens, suggesting that an intermediate worker-to-queen ratio is optimal for monogyne colonies with small gardens. For monogyne colonies with larger gardens (0.45 g) and with either 6, 18, 60, or 90 workers, colonies with 60 or 90 workers had significantly greater garden growth than those with 6 or 18 workers. New daughter queens were produced only by colonies with a worker-to-queen ratio of 60 or 90, suggesting that only colonies with sufficient worker numbers and garden growth are stimulated to produce new queens. A single queen lays only 1.12 ± 0.06 (SE) eggs within 24 h, therefore, limiting growth of monogyne colonies. The transition from monogyny to polygyny through the addition of supernumary queens, as well as a worker-to-queen ratio of around 60, are, therefore, critical for colony growth and reproduction in M. smithii.

Keywords

Caste determination Fungus-growing ants Monogyny Nest-founding Polygyny Survival strategy 

Notes

Acknowledgements

We thank Etzel Monique Garcia, Dong Joon Kim and Ryan Bailey for colony maintenance; David Stein, Alexander Wild, Johann Hofmann, Lawrence Gilbert, Arjuna Rajakumar, and Ehab Abouheif for comments on the experimental design. The study was funded by a Texas Ecolab award to CCF, National Science Foundation award DEB-1354666 to UGM, and the W. M. Wheeler Lost Pines Endowment from the University of Texas at Austin.

Supplementary material

40_2019_741_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 40 kb)
40_2019_741_MOESM2_ESM.csv (12 kb)
Supplementary material 2 (CSV 11 kb)
40_2019_741_MOESM3_ESM.csv (3 kb)
Supplementary material 3 (CSV 2 kb)
40_2019_741_MOESM4_ESM.csv (5 kb)
Supplementary material 4 (CSV 4 kb)
40_2019_741_MOESM5_ESM.csv (1 kb)
Supplementary material 5 (CSV 1 kb)
40_2019_741_MOESM6_ESM.csv (2 kb)
Supplementary material 6 (CSV 2 kb)
40_2019_741_MOESM7_ESM.csv (1 kb)
Supplementary material 7 (CSV 1 kb)

References

  1. Adams ES, Tschinkel WR (1995) Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav Ecol Sociobiol 37:233–242CrossRefGoogle Scholar
  2. Bartz SH, Hölldobler B (1982) Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav Ecol Sociobiol 10:137–147CrossRefGoogle Scholar
  3. Berger B, Poiani SB, Roat TC, Cruz-Landim C (2015) Ovary development in honeybee (Apis mellifera L.) workers under CO2 narcosis, caged outside of the colony. J Apic Sci 59:51–58Google Scholar
  4. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135PubMedCrossRefPubMedCentralGoogle Scholar
  5. Boulay R, Hefetz A, Cerdá X, Devers S, Francke W, Twele R, Lenoir A (2007) Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behav Ecol Sociobiol 61:1531–1541CrossRefGoogle Scholar
  6. Boulay R, Cerdá X, Fertin A, Ichinose K, Lenoir A (2009) Brood development into sexual females depends on the presence of a queen but not on temperature in an ant dispersing by colony fission, Aphaenogaster senilis. Ecol Entomol 34:595–602CrossRefGoogle Scholar
  7. Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3:311–317PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cahan S, Julian GE (1999) Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav Ecol 10:585–591CrossRefGoogle Scholar
  9. Chiu CI, Neoh KB, Li HF (2018) Colony-founding success of pleometrosis in a fungus-growing termite Odontotermes formosanus. Behav Ecol Sociobiol 72:13CrossRefGoogle Scholar
  10. Endler A, Leibig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950PubMedCrossRefPubMedCentralGoogle Scholar
  11. Fang CC (2019) Embryogenesis, trophic eggs, and early colony growth of myrmicine ants. PhD dissertation, The University of Texas at AustinGoogle Scholar
  12. Fernández-Marín H, Zimmerman JK, Wcislo WT (2003) Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): demography and putative prophylactic behaviors. Insect Soc 50:304–308CrossRefGoogle Scholar
  13. Fernández-Marín H, Zimmerman JK, Wcislo WT (2004) Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini). Biol J Linn Soc 81:39–48CrossRefGoogle Scholar
  14. Fernández-Marín H, Zimmerman JK, Wcislo WT, Rehner SA (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J Nat Hist 39:1735–1743CrossRefGoogle Scholar
  15. Grbic M, Rivers D, Strand MR (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565PubMedCrossRefPubMedCentralGoogle Scholar
  16. Himler AG, Caldera EJ, Baer BC, Fernández-Marín H, Mueller UG (2009) No sex in fungus-farming ants or their crops. Proc R Soc B 276:2611–2616PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15CrossRefGoogle Scholar
  18. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, BostonCrossRefGoogle Scholar
  19. Hughes WHO, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260PubMedCrossRefPubMedCentralGoogle Scholar
  20. Johnson RA (2004) Colony founding by pleometrosis in the semiclaustral seed-harvester ant Pogonomyrmex californicus (Hymenoptera: Formicidae). Anim Behav 68:1189–1200CrossRefGoogle Scholar
  21. Julian GE, Fewell JH (2004) Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Anim Behav 68:1–8CrossRefGoogle Scholar
  22. Kardish MR, Mueller UG, Amador-Vargas S, Dietrich EI, Ma R, Barrett B, Fang CC (2015) Blind trust in unblinded observation in ecology, evolution, and behavior. Front Ecol Evol 3:51CrossRefGoogle Scholar
  23. Keller L (1991) Queen number, mode of colony founding, and queen reproductive success in ants (Hymenoptera Formicidae). Ethol Ecol Evol 3:307–316CrossRefGoogle Scholar
  24. Kellner K, Fernández-Marín H, Ishak HD, Sen R, Linksvayer TA, Mueller UG (2013) Co-evolutionary patterns and diversification of ant-fungus associations in the asexual fungus-farming ant Mycocepurus smithii in Panama. J Evol Biol 26:1353–1362PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kellner K, Ishak HD, Linksvayer TA, Mueller UG (2015) Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol Ecol 91:fiv073PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kellner K, Kardish MR, Seal JN, Linksvayer TA, Mueller UG (2018) Symbiont-mediated host-parasite dynamics in a fungus-gardening ant. Microb Ecol 76:530–543PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kempf WW (1963) A review of the ant genus Mycocepurus Forel, 1983 (Hymenoptera: Formicidae). Stud Entomol 6:417–432Google Scholar
  28. Khila A, Abouheif E (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proc Natl Acad Sci USA 105:17884–17889PubMedCrossRefPubMedCentralGoogle Scholar
  29. Khila A, Abouheif E (2010) Evaluating the role of reproductive constraints in ant social evolution. Philo Trans R Soc Lond B Biol Sci 365:617–630CrossRefGoogle Scholar
  30. Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R (2005) Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mackay WP, Maes JM, Fernández PR, Luna G (2004) The ants of North and Central America: the genus Mycocepurus (Hymenoptera: Formicidae). J Insect Sci 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  32. Marti HE, Carlson AL, Brown BV, Mueller UG (2015) Foundress queen mortality and early colony growth of the leafcutter ant, Atta texana (Formicidae, Hymenoptera). Insectes Soc 62:357–363CrossRefGoogle Scholar
  33. Mehdiabadi NJ, Hughes B, Mueller UG (2006) Cooperation, conflict, and coevolution in the attine ant-fungus symbiosis. Behav Ecol 17:291–296CrossRefGoogle Scholar
  34. Meirelles LA, McFrederick QS, Rodrigues A, Mantovani JD, de Melo Rodovalho C, Ferreira H, Bacci M, Mueller UG (2016) Bacterial microbiomes from vertically-transmitted fungal inocula of the leaf-cutting ant Atta texana. Environ Microbiol Rep 8:630–640PubMedCrossRefPubMedCentralGoogle Scholar
  35. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038PubMedCrossRefPubMedCentralGoogle Scholar
  36. Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76:169–197PubMedCrossRefPubMedCentralGoogle Scholar
  37. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  38. Overson R, Gadau J, Clark RM, Pratt SC, Fewell JH (2014) Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav Ecol Sociobiol 68:21–30CrossRefGoogle Scholar
  39. Porter SD, Tschinkel WR (1986) Adaptive value of nanitic workers in newly founded red imported fire ant colonies (Hymenoptera: Formicidae). Ann Entomol Soc Am 79:723–726CrossRefGoogle Scholar
  40. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 1 Mar 2019
  41. Rabeling C (2004) Nester, Streueintrag und symbiontische Pilze amazonischer Ameisen der Gruppe ursprünglicher Attini. Master of Science Thesis, University of TübingenGoogle Scholar
  42. Rabeling C, Kronauer DJC (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol 58:273–292PubMedCrossRefPubMedCentralGoogle Scholar
  43. Rabeling C, Lino-Neto J, Cappellari SC, Dos-Santos IA, Mueller UG, Bacci M Jr (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One 4:e6781PubMedPubMedCentralCrossRefGoogle Scholar
  44. Rabeling C, Gonzales O, Schultz TR, Bacci M Jr, Garcia MVB, Verhaagh M, Ishak HD, Mueller UG (2011) Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. Proc Natl Acad Sci USA 108:12366–12371PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ratnieks FLW, Reeve HK (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theor Biol 158:33–65CrossRefGoogle Scholar
  46. Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251PubMedCrossRefPubMedCentralGoogle Scholar
  47. Richards MH, Packer L (1994) Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. Behav Ecol Sociobiol 34:385–391CrossRefGoogle Scholar
  48. Rissing SW, Pollock GB (1991) An experimental analysis of pleometrotic advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera; Formicidae). Insectes Soc 38:205–211CrossRefGoogle Scholar
  49. Ruel C, Cerdá X, Boulay R (2012) Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim Behav 84:853–860CrossRefGoogle Scholar
  50. Schmidt AM, Linksvayer TA, Boomsma JJ, Pedersen JS (2011) Queen–worker caste ratio depends on colony size in the pharaoh ant (Monomorium pharaonis). Insectes Soc 58:139–144CrossRefGoogle Scholar
  51. Seal JN, Tschinkel WR (2007) Complexity in an obligate mutualism: do fungus-gardening ants know what makes their garden grow? Behav Ecol Sociobiol 61:1151–1160CrossRefGoogle Scholar
  52. Seal JN, Tschinkel WR (2008) Food limitation in the fungus-gardening ant, Trachymyrmex septentrionalis. Ecol Entomol 33:597–607CrossRefGoogle Scholar
  53. Shik JZ, Santos J, Seal JN, Kay A, Mueller UG, Kaspari M (2014) Metabolism and the rise of fungus cultivation by ants. Am Nat 184:364–373PubMedCrossRefPubMedCentralGoogle Scholar
  54. Sosa-Calvo J, Jesovnik A, Okonski E, Schultz TR (2015) Locating, collecting, and maintaining colonies of fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Sociobiology 62:300–320CrossRefGoogle Scholar
  55. Tschinkel WR, Howard DF (1983) Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 12:103–113CrossRefGoogle Scholar
  56. Warner MR, Kovaka K, Linksvayer TA (2016) Late-instar ant worker larvae play a prominent role in colony-level caste regulation. Insectes Soc 63:575–583CrossRefGoogle Scholar
  57. Weber NA (1958) Evolution in fungus-growing ants. In: Proceedings of the tenth international congress of entomology, vol 2, pp 459–473Google Scholar
  58. Weber NA (1966) Fungus-growing ants. Science 153:587–604PubMedCrossRefGoogle Scholar
  59. Weber NA (1982) Fungus ants. In: Hermann HR (ed) Social insects. Academic Press, New York, pp 255–363CrossRefGoogle Scholar
  60. Wheeler W (1907) The fungus-growing ants of North America. Bull Am Mus Nat Hist 23:669–807Google Scholar
  61. Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34CrossRefGoogle Scholar
  62. Wheeler DE (1994) Nourishment in ants: patterns in individuals and societies. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Colorado, pp 245–278Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Department of Integrative BiologyThe University of Texas at AustinAustinUSA
  2. 2.School for Environment and SustainabilityUniversity of MichiganAnn ArborUSA

Personalised recommendations