Advertisement

Color discrimination and preference in the fire ant Solenopsis invicta Buren

  • J. R. CarbaughEmail author
  • R. D. Renthal
  • S. B. Vinson
  • R. F. Medina
Research Article

Abstract

Ants generally use chemoreception more than vision to obtain information about their environment. However, available genome sequences suggest that color vision is possibly widespread in ants. In this study, responses of workers of the fire ant Solenopsis invicta Buren in dual choice conditions for differently colored glass bead pairs were tested. Workers from ten colonies were randomly selected and allowed to perform digging behavior in an apparatus filled with colored glass beads in paired choice tests for 1 h. In the experimental group, workers dug in light conditions, while in the control group, workers dug in the dark. Glass beads consisted of five colors: blue, green, yellow, orange, and red. The number of glass beads brought to the surface was recorded and used as indication of preference of workers. Results indicated that workers significantly preferred one or more colors over alternatives and they had a general preference for relatively longer wavelengths compared to shorter wavelengths. Comparison of the estimated absorbed light intensity with the bead choices showed that workers generally preferred beads that transmitted less light. However, although the absorbed intensity was the same for blue and green beads, the workers had a significant preference for green beads, thereby clearly showing color discrimination. It was also observed that workers dug more in the light compared to the dark conditions. Results of this study can be used to improve the attractiveness of fire ant baits by exploiting their color preferences. The possibility of S. invicta using color vision and areas to further explore are discussed.

Keywords

Solenopsis invicta Fire ant Formicidae Color vision Visual discrimination 

Notes

Acknowledgements

We thank Michael Longnecker for helping with statistics and Julio Bernal for making helpful comments.

Supplementary material

40_2019_740_MOESM1_ESM.pdf (933 kb)
Supplementary material 1 (PDF 933 kb)

References

  1. Adams CT (1986) Agricultural and medical impact of the imported fire ants. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 48–57Google Scholar
  2. Aksoy V, Camlitepe Y (2012) Behavioural analysis of chromatic and achromatic vision in the ant Formica cunicularia (Hymenoptera: Formicidae). Vis Res 67:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aksoy V, Camlitepe Y (2014) A behavioral analysis of achromatic cue perception by the ant Cataglyphis aenescens (Hymenoptera: Formicidae). Turk J Zool 38:199–208CrossRefGoogle Scholar
  4. Aksoy V, Camlitepe Y (2018) Spectral sensitivies of ants—a review. Anim Biol 68:55–73CrossRefGoogle Scholar
  5. Allen C, Epperson D, Garmestani A (2004) Red imported fire ant impacts on wildlife: a decade of research. Am Midl Nat 152:88–103CrossRefGoogle Scholar
  6. Aquino M, Dias AM, Borges M, Moraes MCB, Laumann RA (2012) Influence of visual cues on host searching and learning behaviour of the egg parasitoids Telenomus podisi and Trissolcus basalis. Entomol Exp Appl 145:162–174CrossRefGoogle Scholar
  7. Ascunce MS et al (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baker GT, Ma PW (2006) Morphology and number of ommatidia in the compound eyes of Solenopsis invicta, Solenopsis richteri, and their hybrid (Hymenoptera: Formicidae). Zool Anz 245:121–125CrossRefGoogle Scholar
  9. Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109:835–846CrossRefGoogle Scholar
  10. Barbero F, Patricelli D, Witek M, Balletto E, Casacci L, Sala M, Bonelli S (2012) Myrmica ants and their butterfly parasites with special focus on the acoustic communication. Psyche 2012:1–11CrossRefGoogle Scholar
  11. Barr CL (2005) Broadcast baits for fire ant control. Texas cooperative extension B-6099. Texas A&M University, College StationGoogle Scholar
  12. Bernard GD, Remington CL (1991) Color vision in Lycaena butterflies: spectral tuning of receptor arrays in relation to behavioral ecology. P Natl Acad Sci USA 88:2783–2787CrossRefGoogle Scholar
  13. Bernstein S, Finn C (1971) Ant compound eye: size-related ommatidium differences within a single wood ant nest. Experientia 27:708–710PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bowens SR, Glatt DP, Pratt SC (2013) Visual navigation during colony emigration by the ant Temnothorax rugatulus. PLoS One 8:e64367.  https://doi.org/10.1371/journal.pone.0064367 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Briscoe AD (2002) Homology modeling suggests a functional role for parallel amino acid substitutions between bee and butterfly red-and green-sensitive opsins. Mol Biol Evol 19:983–986PubMedCrossRefPubMedCentralGoogle Scholar
  16. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bruzzone OA, Corley JC (2011) Which is the best experimental design in animal choice tests? Anim Behav 82:161–169CrossRefGoogle Scholar
  18. Camlitepe Y, Aksoy V (2010) First evidence of fine colour discrimination ability in ants (Hymentopera: Formicidae). J Exp Biol 213:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  19. Camlitepe Y, Stradling DJ (1995) Wood ants orient to magnetic fields. P Roy Soc Lond B Bio 261:37–41CrossRefGoogle Scholar
  20. Camlitepe Y, Aksoy V, Uren N, Yilmaz A, Becenen I (2005) An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol Hung 56:215–224PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cammaerts M-C, Cammaerts D (2014) Comparative outlook over physiological and ecological characteristics of three closely-related Myrmica species. Biologia 69:1051–1058CrossRefGoogle Scholar
  22. Casacci LP, Thomas JA, Sala M, Treanor D, Bonelli S, Balletto E, Schönrogge K (2013) Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr Biol 23:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen T-Y, Chu C-C, Fitzgerald G, Natwick ET, Henneberry TJ (2004) Trap evaluations for thrips (Thysanoptera: Thripidae) and hoverflies (Diptera: Syrphidae). Environ Entomol 33:1416–1420CrossRefGoogle Scholar
  24. Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Isr J Plant Sci 45:169–183CrossRefGoogle Scholar
  25. Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334CrossRefGoogle Scholar
  27. Cokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50PubMedCrossRefPubMedCentralGoogle Scholar
  28. d’Ettorre P, Lenoir A (2010) Nestmate recognition. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, New York, pp 194–209Google Scholar
  29. Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Animal behaviour: insect orientation to polarized moonlight. Nature 424:33PubMedCrossRefPubMedCentralGoogle Scholar
  30. De Bruyne M, Baker T (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897PubMedCrossRefPubMedCentralGoogle Scholar
  31. De Ibarra NH, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433CrossRefGoogle Scholar
  32. Demirel N, Cranshaw W (2006) Relative attraction of color traps and plant extracts to the false chinch bug Nysius raphanus and its parasitoid, Phasia occidentis, on brassica crops in Colorado. Phytoparasitica 34:197–203.  https://doi.org/10.1007/bf02981320 CrossRefGoogle Scholar
  33. Depickère S, Fresneau D, Deneubourg J-L (2004) The influence of red light on the aggregation of two castes of the ant, Lasius niger. J Insect Physiol 50:629–635PubMedCrossRefPubMedCentralGoogle Scholar
  34. Döring TF, Skellern M, Watts N, Cook SM (2012) Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae). Physiol Entomol 37:360–378CrossRefGoogle Scholar
  35. Farnier K, Dyer AG, Steinbauer MJ (2014) Related but not alike: not all Hemiptera are attracted to yellow. Front Ecol Evol 2:67.  https://doi.org/10.3389/fevo.2014.00067 CrossRefGoogle Scholar
  36. Gautrais J, Jm Buhl, Valverde S, Kuntz P, Theraulaz G (2014) The role of colony size on tunnel branching morphogenesis in ant nests. PLoS One 9:e109436PubMedPubMedCentralCrossRefGoogle Scholar
  37. Godzinska EJ, Korczynska J (1997) Digging behaviour and responses to photic and gravitational cues as elements of escape behaviour of bumblebees. Acta Neurobiol Exp 57:59–70Google Scholar
  38. Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gronenberg W (2001) Subdivision of hymenopteran mushroom body calyces by their afferent supply. J Comp Neur 436:474–489CrossRefGoogle Scholar
  40. Gronenberg W (2008) Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. Myrmecol News 11:25–36Google Scholar
  41. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hickling R, Brown RL (2000) Analysis of acoustic communication by ants. J Acoust Soc Am 108:1920–1929PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol A 184:129–141CrossRefGoogle Scholar
  44. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  45. Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New YorkGoogle Scholar
  46. Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100PubMedCrossRefPubMedCentralGoogle Scholar
  47. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hoy R, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hu X, Wang Y, Lin X, Chen T, An D, Lei Z (2011) Preference of aphids to different color sticky cards and different wavelengths of yellow sticky boards. Acta Agric Bor Sin 20:190–193Google Scholar
  50. Hutchinson J (2005) Is more choice always desirable? Evidence and arguments from leks, food selection, and environmental enrichment. Biol Rev 80:73–92PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ishay JS, Elly Lior S (1990) Digging activity by the oriental hornet (Vespa orientalis; Hymenoptera, Vespinae) is correlated with solar radiation. J Ethol 8:61–68.  https://doi.org/10.1007/bf02350275 CrossRefGoogle Scholar
  52. Ishay JS, Shira K (2000) Ultraviolet B light stimulates hornet activities—a review. Semicond Sci Technol 15:704–723CrossRefGoogle Scholar
  53. King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. P Natl Acad Sci USA 105:20339–20343CrossRefGoogle Scholar
  54. Klotz J, Reid B, Gordon W (1992) Variation of ommatidia number as a function of worker size in Camponotus pennsylvanicus (DeGeer) (Hymenoptera: Formicidae). Insect Soc 39:233–236CrossRefGoogle Scholar
  55. Kretz R (1979) A behavioural analysis of colour vision in the ant Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 131:217–233CrossRefGoogle Scholar
  56. Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456.  https://doi.org/10.1093/beheco/12.4.447 CrossRefGoogle Scholar
  57. Larabee FJ, Suarez AV (2014) The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae). Myrmecol News 20:25–36Google Scholar
  58. Lee H-J, Loher W (1996) Influence of age and environmental factors on burrow-making behavior of the short-tailed cricket, Anurogryllus muticus (De Geer) (Orthoptera: Gryllidae). J Insect Behav 9:819–834.  https://doi.org/10.1007/bf02213558 CrossRefGoogle Scholar
  59. Lehrer M, Srinivasan MV, Zhang S-W, Horridge GA (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332:356–357CrossRefGoogle Scholar
  60. Lofgren CS (1986) The economic importance and control of imported fire ants in the United States. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, New York, pp 227–256Google Scholar
  61. Lythgoe J, Partridge J (1989) Visual pigments and the acquisition of visual information. J Exp Biol 146:1–20PubMedPubMedCentralGoogle Scholar
  62. Marak G, Wolken J (1965) An action spectrum for the fire ant (Solenopsis saevissima). Nature 205:1328–1329CrossRefGoogle Scholar
  63. Martínez-Harms J, Palacios A, Márquez N, Estay P, Arroyo M, Mpodozis J (2010) Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point. J Exp Biol 213:564–571PubMedCrossRefPubMedCentralGoogle Scholar
  64. Martinoya C, Bloch S, Ventura DF, Puglia NM (1975) Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J Comp Physiol 104:205–210CrossRefGoogle Scholar
  65. McLeman M, Pratt S, Franks N (2002) Navigation using visual landmarks by the ant Leptothorax albipennis. Insect Soc 49:203–208CrossRefGoogle Scholar
  66. Morrison LW, Porter SD, Daniels E, Korzukhin MD (2004) Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6:183–191CrossRefGoogle Scholar
  67. Moser JC, Reeve JD, Bento JMS, Della Lucia TM, Cameron RS, Heck NM (2004) Eye size and behaviour of day-and night-flying leafcutting ant alates. J Zool 264:69–75CrossRefGoogle Scholar
  68. Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol 137:63–71CrossRefGoogle Scholar
  69. Narendra A, Reid SF, Greiner B, Peters RA, Hemmi JM, Ribi WA, Zeil J (2010) Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc R Soc B. 278:1141–1149.  https://doi.org/10.1098/rspb.2010.1378 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Natwick ET, Byers JA, Chu C-c, Lopez M, Henneberry TJ (2007) Early detection and mass trapping of Frankliniella occidentalis, and Thrips tabaci in vegetable crops. Southwest Entomol 32:229–238CrossRefGoogle Scholar
  71. Newland PL, Hunt E, Sharkh SM, Hama N, Takahata M, Jackson CW (2008) Static electric field detection and behavioural avoidance in cockroaches. J Exp Biol 211:3682–3690PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ogawa Y, Falkowski M, Narendra A, Zeil J, Hemmi JM (2015) Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proc R Soc B 282:20150673PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ozaki M et al (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314PubMedCrossRefPubMedCentralGoogle Scholar
  74. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pollack G (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767PubMedCrossRefPubMedCentralGoogle Scholar
  76. Prolić Z, Jovanović R, Konjević G, Janać B (2003) Behavioral differences of the insect Morimus funereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromagn Biol Med 22:63–73CrossRefGoogle Scholar
  77. Provost E, Blight O, Tirard A, Renucci M (2008) Hydrocarbons and insects’ social physiology. In: Maes R (ed) Insect physiology: new research. Nova Science Publishers, New York, pp 19–72Google Scholar
  78. Raffa KF, Havill NP, Nordheim EV (2002) How many choices can your test animal compare effectively? Evaluating a critical assumption of behavioral preference tests. Oecologia 133:422–429PubMedCrossRefPubMedCentralGoogle Scholar
  79. Rao S, Ostroverkhova O (2015) Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence. J Comp Physiol A 201:705–716CrossRefGoogle Scholar
  80. Reed J, Puckett R, Gold R (2015) Induced effects on red imported fire ant (Hymenoptera: Formicidae) forager size ratios by Pseudacteon spp. (Diptera: Phoridae): implications on bait size selection. Environ Entomol 44:1407–1416PubMedCrossRefPubMedCentralGoogle Scholar
  81. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370.  https://doi.org/10.1242/jeb.049338 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Reisenman CE, Giurfa M (2008) Chromatic and achromatic stimulus discrimination of long wavelength (red) visual stimuli by the honeybee Apis mellifera. Arthropod-Plant Inte 2:137–146CrossRefGoogle Scholar
  83. Richard F-J, Hunt J (2013) Intracolony chemical communication in social insects. Insect Soc 60:275–291CrossRefGoogle Scholar
  84. Romeis J, Shanower T, Zebitz C (1998) Response of Trichogramma egg parasitoids to colored sticky traps. Biocontrol 43:17–27CrossRefGoogle Scholar
  85. Roth H, Menzel R (1972) ERG of Formica polyctena and selective adaptation. In: Wehner R (ed) Information processing in the visual systems of anthropods. Springer, Berlin, pp 177–181CrossRefGoogle Scholar
  86. Sandoval EL, Wajnberg E, Esquivel DM, de Barros HL, Acosta-Avalos D (2012) Magnetic orientation in Solenopsis sp. ants. J Insect Behav 25:612–619CrossRefGoogle Scholar
  87. Sasagawa H, Narita R, Kitagawa Y, Kadowaki T (2003) The expression of genes encoding visual components is regulated by a circadian clock, light environment and age in the honeybee (Apis mellifera). Eur J Neurosci 17:963–970.  https://doi.org/10.1046/j.1460-9568.2003.02528.x CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schwarz S, Narendra A, Zeil J (2011) The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct Dev 40:128–134PubMedCrossRefPubMedCentralGoogle Scholar
  89. Segura DF, Viscarret MM, Paladino LZC, Ovruski SM, Cladera JL (2007) Role of visual information and learning in habitat selection by a generalist parasitoid foraging for concealed hosts. Anim Behav 74:131–142CrossRefGoogle Scholar
  90. Shafir S (1996) Color discrimination conditioning of a wasp, Polybia occidentalis (Hymenoptera: Vespidae). Biotropica 28:243–251CrossRefGoogle Scholar
  91. Shimoda M, Honda K-i (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421CrossRefGoogle Scholar
  92. Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–496CrossRefGoogle Scholar
  93. Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284PubMedCrossRefPubMedCentralGoogle Scholar
  94. Stavenga D, Smits R, Hoenders B (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis Res 33:1011–1017PubMedCrossRefPubMedCentralGoogle Scholar
  95. Stephen WP, Rao S (2005) Unscented color traps for non-Apis bees (Hymenoptera: Apiformes). J Kansas Entomol Soc 78:373–380CrossRefGoogle Scholar
  96. Sturgis SJ, Gordon DM (2012) Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol News 16:101–110Google Scholar
  97. Sutherst RW, Maywald G (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environ Entomol 34:317–335CrossRefGoogle Scholar
  98. Tanner CJ, Adler FR (2009) To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim Behav 77:297–305CrossRefGoogle Scholar
  99. Tao L, Mao-Ling S, Shu-Ping S, Guo-Fa C, Zhi-Hong G (2012) Effect of the trap color on the capture of ichneumonids wasps (Hymenoptera). Rev Colomb Entomol 38:347–350Google Scholar
  100. Telles FJ, Lind O, Henze MJ, Rodríguez-Gironés MA, Goyret J, Kelber A (2014) Out of the blue: the spectral sensitivity of hummingbird hawkmoths. J Comp Physiol A 200:537–546CrossRefGoogle Scholar
  101. Torrisi GJ, Hoback WW (2013) Color and container size affect mosquito (Aedes triseriatus) oviposition. Northeast Nat 20:363–371CrossRefGoogle Scholar
  102. Tschinkel WR (2006) The fire ants. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  103. Vinson SB (2013) Impact of the invasion of the imported fire ant. Insect Sci 20:439–455PubMedCrossRefPubMedCentralGoogle Scholar
  104. von Frisch K (1914) Der farbensinn und formensinn der biene. Zool Jahrb Abt All Zool Physiol Tiere 35:1–179Google Scholar
  105. Wäckers F (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649CrossRefGoogle Scholar
  106. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DM (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207–S225PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wakakuwa M, Terakita A, Koyanagi M, Stavenga DG, Shichida Y, Arikawa K (2010) Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One 5:e15015PubMedPubMedCentralCrossRefGoogle Scholar
  108. Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254.  https://doi.org/10.1146/annurev-ento-120709-144852 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wehner R, Toggweiler F (1972) Verhaltensphysiologischer nachweis des farbensehens bei Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 77:239–255CrossRefGoogle Scholar
  110. Wetterer JK (2013) Exotic spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) beyond North America. Sociobiology 60:50–55CrossRefGoogle Scholar
  111. Williams DF, Homer L, Oi DH (2001) An historical perspective of treatment programs and the development of chemical baits for control. Am Entomol 47:146–159CrossRefGoogle Scholar
  112. Wurm Y et al (2011) The genome of the fire ant Solenopsis invicta. P Natl Acad Sci USA 108:5679–5684CrossRefGoogle Scholar
  113. Yilmaz A, Lindenberg A, Albert S, Grübel K, Spaethe J, Rössler W, Groh C (2016) Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Dev Neurobiol 76:1041–1057PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yilmaz A, Dyer AG, Rössler W, Spaethe J (2017) Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. J Exp Biol 220:3315–3326PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Department of EntomologyTexas A&M UniversityCollege StationUSA
  2. 2.Biology DepartmentHastings CollegeHastingsUSA
  3. 3.Department of BiologyThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations