Advertisement

Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps

  • L. BeaniEmail author
  • A.-G. Bagnères
  • M. Elia
  • I. Petrocelli
  • F. Cappa
  • M. C. Lorenzi
Research Article

Abstract

In the paper wasp Polistes dominula, cuticular hydrocarbons play a critical role to acquire information regarding conspecific individuals. However, the relationship between cuticular hydrocarbons, health status, and male sexually selected traits is poorly investigated. In this study, we characterized the cuticular hydrocarbon profile of adult male and female wasps, infected or not by the strepsipteran endoparasite Xenos vesparum, to assess whether the chemical signature provides information about sex and health status (parasite infection). Moreover, we tested whether the chemical profile reflects male quality as measured via morphological and behavioural (sexually selected) traits at leks. Our results showed that males and females had similar total amount of CHCs, quantitatively different profiles and, to a lesser extent, sex-specific chemical compounds. Cuticular profiles were influenced by the strepsipteran infection, and the effect was stronger in females (the primary host) than in males, according to the physiological castration of female but not of male hosts. Regarding territorial and non-territorial males, no significant difference emerged in their chemical profiles. Furthermore, sex-dimorphic visual signals (size, shape, and asymmetry of abdominal yellow spots) were related to the behavioural displays of territorial males. We hypothesize that cuticular hydrocarbons are potential multi-role cues to assess sex and health status in male and female wasps, in synergy with visual signals and territorial performance in signaling male quality.

Keywords

Cuticular hydrocarbons Polistes dominula Xenos vesparum Sexually selected traits Sexual signals Territorial behaviour Sex differences 

Notes

Acknowledgements

The authors are thankful to Eva Peroni, André Rodrigues de Souza, and the members of the Florence Group for the Study of Social Wasps for their support during the experiment, both in the field and in the laboratory.

References

  1. Aitchison J (1982) The statistical analysis of compositional data. Royal Stat Soc 44:139–160Google Scholar
  2. Ayasse M, Paxton RJ, Tengö J (2001) Mating behaviour and chemical communication in the order Hymenoptera. Annu Rev Entomol 46:31–78CrossRefPubMedGoogle Scholar
  3. Bagnères AG, Lorenzi C (2010) Chapter 14. Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 282–324CrossRefGoogle Scholar
  4. Bates D, Kliegl R, Vasishth S, Baayen H (2015) Parsimonious mixed models. http://arxiv.org/abs/1506.04967
  5. Beani L (1996) Lek-like courtship in paper wasps: “a prolonged, delicate, and troublesome affair”. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps. Oxford Univ Press, Oxford, pp 113–125Google Scholar
  6. Beani L, Calloni C (1991a) Male rubbing behaviour and the hypothesis of pheromonal release in polistine wasps (Hymenoptera vespidae). Ethol Ecol Evol 1:51–54CrossRefGoogle Scholar
  7. Beani L, Calloni C (1991b) Leg tegumental glands and male rubbing behaviour at leks in Polistes dominulus (Hymenoptera: Vespidae). J Ins Behav 4:449–461CrossRefGoogle Scholar
  8. Beani L, Landi M (2000) Aerial leks and marking behaviour in Parischnogaster mellyi males (Hymenoptera Stenogastrinae). Ins Soc Life 3:13–17Google Scholar
  9. Beani L, Sledge MF, Maiani S, Boscaro F, Landi M, Fortunato A, Turillazzi S (2002) Behavioral and chemical analyses of scent-marking in hover wasps (Vespidae, Stenogastrinae). Ins Soc 49:275–281CrossRefGoogle Scholar
  10. Beani L, Turillazzi S (1988) Alternative mating tactics in males of Polistes dominulus (Hymenoptera: Vespidae). Behav Ecol Sociobiol 22:257–264CrossRefGoogle Scholar
  11. Beani L, Zaccaroni M (2015) Experimental male size manipulation in Polistes dominula paper wasps: to be of the right size. Ethol Ecol Evol 27:185–189.  https://doi.org/10.1080/03949370.2014.915431 CrossRefGoogle Scholar
  12. Beani L, Dallai R, Mercati D, Giusti F, Cappa F, Manfredini F (2011) When a parasite breaks all the rules of a colony: morphology and fate of wasps infected by a strepsipteran endoparasite. Anim Behav 82:1305–1312CrossRefGoogle Scholar
  13. Beani L, Dessì-Fulgheri F, Cappa F, Toth A (2014) The trap of sex in social insects: from the female to the male perspective. Neurosci Biobehav Rev 46:519–533.  https://doi.org/10.1016/j.neubiorev.2014.09.014 CrossRefPubMedGoogle Scholar
  14. Beani L, Cappa F, Petrocelli I, Gottardo M, Manfredini F, Giusti F, Dallai R (2017) Subtle effect of Xenos vesparum (Xenidae, Strepsiptera) on the reproductive apparatus of its male host: parasite or parasitoid? J Insect Physiol 101:22–30CrossRefPubMedGoogle Scholar
  15. Beani L, Cappa F, Manfredini F, Zaccaroni M (2018) Preference of Polistes dominula wasps for trumpet creepers when infected by Xenos vesparum: a novel example of co-evolved traits between host and parasite. PLoS One 13:e0205201CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blomquist GJ, Bagnères AG (2010) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge Univ Press, CambridgeCrossRefGoogle Scholar
  17. Bonavita-Cougourdan A, Theraulaz G, Bagnères AG, Roux M, Pratte M, Provost E, Clément JL (1991) Cuticular hydrocarbons, social organization and ovarian development in a polistine wasp: Polistes dominulus christ. Comp Biochem Physiol B 100:667–680CrossRefGoogle Scholar
  18. Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol 50:395–420CrossRefPubMedGoogle Scholar
  19. Brandstaetter AS, Endler A, Kleinidan CJ (2008) Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95:601–608CrossRefPubMedGoogle Scholar
  20. Brandstaetter AS, Rössler W, Kleinidan CJ (2010) Dummies versus air puffs: efficient stimulus delivery for low-volatile odors. Chem Senses 35:323–333.  https://doi.org/10.1093/chemse/bjq022 CrossRefPubMedGoogle Scholar
  21. Bruschini C, Cervo R, Turillazzi S (2010) Pheromones in social wasps. Vitam Horm 83:447–492CrossRefGoogle Scholar
  22. Cappa F, Bruschini C, Cervo R, Turillazzi S, Beani L (2013) Males do not like the working class: male sexual preference and recognition of functional castes in a primitively eusocial wasp. Anim Behav 86:801–810CrossRefGoogle Scholar
  23. Cappa F, Manfredini F, Dallai R, Gottardo M, Beani L (2014) Parasitic castration by Xenos vesparum depends on host gender. Parasitology 141:1080–1087CrossRefPubMedGoogle Scholar
  24. Cappa F, Beani L, Cervo R (2016a) The importance of being yellow: visual over chemical cues in gender recognition in a social wasp. Behav Ecol 27:1182–1189CrossRefGoogle Scholar
  25. Cappa F, Bruschini C, Protti I, Turillazzi S, Cervo R (2016b) Bee guards detect foreign foragers with cuticular chemical profiles altered by phoretic varroa mites. J Apic Res 55:268–277CrossRefGoogle Scholar
  26. Cappa F, Cini A, Pepiciello I, Petrocelli I, Cervo R (2019) Female body size, weight and fat storage rather than nestmateship determine male attraction in the invasive yellow-legged hornet Vespa velutina nigrithorax. Ethol Ecol Evol 31:73–85CrossRefGoogle Scholar
  27. Cervo R, Bertocci F, Turillazzi S (1996) Olfactory cues in host nest detection by the social parasite Polistes sulcifer (Hymenoptera, Vespidae). Behav Process 36:213–218CrossRefGoogle Scholar
  28. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioassays 37(7):822–830CrossRefGoogle Scholar
  29. Costanzi E, Bagnères AG, Lorenzi MC (2013) Changes in the Hydrocarbon Proportions of Colony Odor and Their Consequences on Nestmate Recognition in Social Wasps. PloS one 8:e65107CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dapporto L, Cini A, Palagi E, Morelli M (2007) Behaviour and chemical signature of pre-hibernating females of Polistes dominulus infected by the strepsipteran Xenos vesparum. Parasitology 134:545–552CrossRefPubMedGoogle Scholar
  31. Eickwort K (1969) Separation of the castes of Polistes exclamans and notes on its biology (Hym. Vespidae). Ins Soc 16:67–72CrossRefGoogle Scholar
  32. de Souza AR, Lino-Neto J, Tibbetts EA, Turillazzi S, Beani L (2017) The leks of Polistes dominula paper wasps: tiny abdominal spots play a critical role in male attacks toward potential rivals. Ethol Ecol Evol 29:410–419CrossRefGoogle Scholar
  33. de Souza AR, Guimarães Simões T, Rantala MJ, Fernando Santos E, Lino-Neto J, do Nascimento FS (2018) Sexual ornaments reveal the strength of melanization immune response and longevity of male paper wasps. J Insect Physiol 109:163–168.  https://doi.org/10.1016/j.jinsphys.2018.06.002 CrossRefPubMedGoogle Scholar
  34. Derstine NT, Ohler B, Jimenez SI, Landolt P, Gries G (2017) Evidence for sex pheromones and inbreeding avoidance in select North American yellowjacket species. Entomol Exp Appl 164:35–44CrossRefGoogle Scholar
  35. Elia M, Blancato G, Picchi L, Lucas C, Bagnères AG, Lorenzi MC (2017) Nest signature changes throughout colony cycle and after social parasite invasion in social wasps. PLoS One 12:e0190018.  https://doi.org/10.1371/journal.pone.0190018 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Elias TH, Gelband H (1975) Nectar: its production and function in trumpet creepers. Science 189:289–291CrossRefPubMedGoogle Scholar
  37. Elmquist DC, Landolt PJ, Ream LM, Cha DH (2018) Laboratory demonstrations of pheromone-mediated scent-marking, orientation, and mounting behavior in Polistes exclamans (Hymenoptera: Vespidae). Ann Entomol Soc America 111:21–30CrossRefGoogle Scholar
  38. Espelie KE, Hermann HR (1990) Surface lipid of the social wasp Polistes annularis (L.) and its nest and nest pedicel. J Chem Ecol 16:1841–1852CrossRefPubMedGoogle Scholar
  39. Foley B, Chenoweth SF, Nuzhdin SV, Blows MV (2007) Natural genetic variation in cuticular hydrocarbon expression in male and female, Drosophila melanogaster. Genetics 175:1465–1477CrossRefPubMedPubMedCentralGoogle Scholar
  40. Giusti F, Dallai R, Beani L, Manfredini F, Dallai R (2007) The midgut ultrastructure of the endoparasite Xenos vesparum (Rossi) (Insecta, Strepsiptera) during post-embryonic development and stable carbon isotopic analyses of the nutrient uptake. Arthropod Struct Dev 36:183–197CrossRefPubMedGoogle Scholar
  41. Heinze J (2016) The male has done his work—the male may go. Curr Opin Insect Sci 16:22–27CrossRefPubMedGoogle Scholar
  42. Howard RW, Blomquist GJ (2005) Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:372–393CrossRefGoogle Scholar
  43. Hughes DP, Beani L, Turillazzi S, Kathirithamby J (2004a) Social wasps desert the colony and aggregate outside if parasitized: an example of adaptive parasite manipulation of host behaviour? Behav Ecol 15:1037–43CrossRefGoogle Scholar
  44. Hughes DP, Kathirithamby J, Beani L (2004b) Prevalence of the parasite Strepsiptera in adult Polisteswasps: field collections and literature overview. Ethol Ecol Evol 16:363–375CrossRefGoogle Scholar
  45. Ingleby F (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742CrossRefPubMedPubMedCentralGoogle Scholar
  46. Izzo AS, Tibbetts EA (2012) Spotting the top male: sexually selected signals in male Polistes dominulus wasps. Anim Behav 83:839–845CrossRefGoogle Scholar
  47. Izzo A, Tibbetts EA (2015) Heightened condition dependence of a sexually selected signal in male Polistes dominulus paper wasps. Ethology 121:586–592CrossRefGoogle Scholar
  48. Jeanne RL (1996) The evolution of exocrine gland function in wasps. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps. Oxford University Press, Oxford, pp 144–159Google Scholar
  49. Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289CrossRefPubMedGoogle Scholar
  50. Karubian J, Lindsay WR, Schwabl H, Webster MS (2011) Bill coloration, a flexible signal in a tropical passerine bird, is regulated by social environment and androgens. Anim Behav 8:795–800CrossRefGoogle Scholar
  51. Keeling CI, Plettner E, Slessor KN (2004) Hymenopteran semiochemicals. Top Curr Chem 239:133–177CrossRefPubMedGoogle Scholar
  52. Keeping MG, Lipschitz D, Crewe RM (1986) Chemical mate recognition and release of male sexual behavior in polybiine wasp, Belonogaster petiolata (Degeer) (Hymenoptera: Vespidae). J Chem Ecol 12:773–779CrossRefPubMedGoogle Scholar
  53. Landolt PJ, Jeanne RL, Reed HC (1998) Chemical communication in social wasps. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Ants, wasps, bees and termites. Westview Press, Boulder, pp 216–235Google Scholar
  54. Layton JM, Camann MA, Espelie KE (1994) Cuticular lipid profiles of queens, workers, and males of social wasp Polistes metricus Say are colony-specific. J Chem Ecol 20:2307–2321CrossRefPubMedGoogle Scholar
  55. Lorenzi MC, Bertolino F, Beani L (1994) Nuptial system of a social parasite wasp, Polistes semenowi (Hymenoptera, Vespidae). Ethol Ecol Evol 3:57–60CrossRefGoogle Scholar
  56. Lorenzi MC, Bagnères AG, Clément JL (1996) The role of epicuticular hydrocarbons in social insects: is the same in paper wasps? In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps. Oxford Univ Press, Oxford, pp 178–189Google Scholar
  57. Lorenzi MC, Bagnères AG, Clément JL, Turillazzi S (1997) Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera: Vespidae). Insect Soc 44:123–138CrossRefGoogle Scholar
  58. Lorenzi MC, Sledge MF, Laiolo P, Sturlini E, Turillazzi S (2004) Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. J Insect Physiol 50:935–941CrossRefPubMedGoogle Scholar
  59. Lorenzi MC, Cervo R, Bagnères AG (2011) Facultative social parasites mark host nests with branched hydrocarbons. Anim Behav 82:1149–1157Google Scholar
  60. Lorenzi MC, Azzani L, Bagnères AG (2014) Evolutionary consequences of deception: complexity and informational content of colony signature are favored by social parasitism. Curr Zool 60:137–148CrossRefGoogle Scholar
  61. MacKenzie JK, Landolt PJ, Zack RS (2008) Sex attraction in Polistes dominulus (Christ) demonstrated using olfactometers and morphological sourceextracts. J Entomol Soc BC 105:35–43Google Scholar
  62. Nonacs P, Carlin NF (1990) When can ants discriminate the sex of brood? A new aspect of queen-worker conflict. Proc Natl Acad Sci 87:9670–9673CrossRefPubMedGoogle Scholar
  63. Pardi L (1948) Dominance order in Polistes wasps. Physiol. Zool. 21:1–13CrossRefPubMedGoogle Scholar
  64. Passera L, Aron S (1996) Early sex discrimination and male brood elimination by workers of the Argentine ant. Proc R Soc Lond B 263:1041–1046CrossRefGoogle Scholar
  65. Polak M (1993) Competition for landmark territories among male Polistes canadensis (L.) (Hymenoptera: Vespidae): large-size advantage and alternative mate-acquisition tactics. Behav Ecol 4:325–331CrossRefGoogle Scholar
  66. Post DC, Jeanne RL (1983) Male reproductive behaviour of the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Z Tierpsychol 62:157–171CrossRefGoogle Scholar
  67. Post DC, Jeanne RL (1984) Venom Source of a sex pheromone in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). J Chem Ecol 9:259–266CrossRefGoogle Scholar
  68. Reed HC, Landolt PJ (1990) Sex attraction in paper wasp, Polistes exclamans Viereck (Hymenoptera: Vespidae), in a wind tunnel. J Chem Ecol 16:1277–1287CrossRefPubMedGoogle Scholar
  69. Romani R, Isidoro N, Riolo P, Bin F, Fortunato A, Turillazzi S, Beani L (2005) A new role for antennation in paper wasps (Hymenoptera, Vespidae): antennal courtship and sex dimorphic glands in antennomeres. Ins Soc 52:96–102CrossRefGoogle Scholar
  70. Ryan RE, Gamboa GJ (1986) Nestmate recognition between males and gynes of the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ann Entomol Soc 79:572–575CrossRefGoogle Scholar
  71. Singer TL, Espelie KE, Gamboa GJ (1998) Nest and nestmate discrimination in independent-founding paper wasps. In: Vander Meer RK, Breed MD, Wiston MD, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 104–125Google Scholar
  72. Steiger S, Stökl J (2014) The role of sexual selection in the evolution of chemical signals in insects. Insects 5:423–438CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tibbetts EA, Mettler A, Levy A (2009) Mutual assessment via visual status signals in wasps. Biol Lett 6:10–13CrossRefPubMedPubMedCentralGoogle Scholar
  74. Torres VO, Soares ERP, Lima LD, Lima SM, Andrade LHC, Antonialli-Junior WF (2016) Morphophysiological and cuticular chemical alterations caused by Xenos entomophagus endoparasites in the social wasp Polistes ferreri (Hymenoptera, Vespidae). Parasitology 143:1939–1944CrossRefPubMedGoogle Scholar
  75. Trabalon M, Plateaux L, Peru L, Bagnères AG, Hartmann N (2000) Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J Insect Physiol 46:169–178CrossRefPubMedGoogle Scholar
  76. Turillazzi S, Cervo R (1982) Territorial behaviour in males of Polistes nimpha (Christ) (Hymenoptera, Vespidae). Z Tier Psychol 38:174–80Google Scholar
  77. Wen P, Cheng YN, Dong SH, Wang ZW, Tan K, Nieh JC (2017) The sex pheromone of a globally invasive honey bee predator, the Asian eusocial hornet, Vespa velutina. Sci Rep 7:12956CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wheeler WM (1892) Concerning the “Blood-Tissue” of the Insecta.—III. Psyche 6(193):253–258CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Dipartimento di BiologiaUniversità di FirenzeSesto FiorentinoItaly
  2. 2.I.R.B.I, UMR 7261, CNRSUniversité de ToursToursFrance
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive, CNRS UMR5175Université Montpellier, Université Paul Valery Montpellier 3, EPHE, IRDMontpellierFrance
  4. 4.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
  5. 5.LEEC, Laboratoire d’Ethologie Expérimentale et ComparéeUniversité Paris 13VilletaneuseFrance

Personalised recommendations