Insectes Sociaux

, Volume 66, Issue 4, pp 611–622 | Cite as

Effects of starvation on survival, cannibalism, body mass, and intestinal protozoan profile in the subterranean termite Reticulitermes lucifugus

  • M. Lo PintoEmail author
  • A. Agrò
Research Article


Scarcity or inadequate nutrition can affect biological and behavioural aspects of subterranean termites and their intestinal protozoan profile. The aim of this study was to investigate changes in survival, cannibalism, body mass, and protist community structure of Reticulitermes lucifugus Rossi subspecies “Sicily” following starvation to provide basic knowledge for the development of more specific studies on a possible survival strategy under stressful conditions. In nature, this termite consumes many food sources and its feeding activity is continuous during the year. In a 35-day laboratory experiment, groups of 50 termites (worker/soldier ratio 49:1) were subjected to two diets, starvation (no source of cellulose offered to the termites) and filter-paper feeding (as a control), kept for 35 days with 7-day intervals of inspection, and compared with termites freshly collected from a field colony on May 2017. Under starvation, termite survival decreased to 0% after 35 days for both workers and soldiers, whereas in the fed group (filter-paper diet) it was 83% for workers and 66% for soldiers. Cannibalism was on average 84% on dead workers, 1.7% on survivor workers, and 100% on dead soldiers. The body mass of workers decreased from 3.5 mg/worker (first day of the test) to 2.05 mg/worker (last day of the test). The community structure and abundance of the intestinal protozoa of workers changed in response to starvation. Starvation caused the loss of four, six, and two protist species after 7, 14, and 28 days, respectively, with only one species persisting after 28 days. In most inspection dates, results were significantly different from those of filter-paper-fed and field-collected groups.


Behaviour changes Inadequate nutrition Protists Social insects Survivorship 



We thank Prof. Gianna Agrò for support with the statistical analysis of data and two referees for constructive comments and helpful suggestions on the manuscript.


  1. Belitz LA, Waller DA (1998) Effect of temperature and termite starvation on phagocytosis by protozoan symbionts of the eastern subterranean termite Reticulitermes flavipes Kollar. Microb Ecol 36:75–180Google Scholar
  2. Borges FP, Gottardi B, Stuepp C, Larré AB, de Brum Vieira P, Tasca T, De Carli GA (2007) Morphological aspects of Monocercomonas sp. and investigation on probable pseudocysts occurrence. Parasitol Res 101:1503–1509PubMedGoogle Scholar
  3. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487Google Scholar
  4. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedPubMedCentralGoogle Scholar
  5. Brugerolle G, Bordereau C (2006) Immunological and ultrastructural characterization of spirotrichonymphid flagellates from Reticulitermes grassei and R. flavipes (syn. R. santonensis), with special reference to Spirotrichonympha, Spironympha and Microjoenia. Org Divers Evol 6:109–123Google Scholar
  6. Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates, soil biology, vol 6. Springer, Berlin, Heidelberg, pp 243–270Google Scholar
  7. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166PubMedGoogle Scholar
  8. Brune A, Ohkuma M (2011) Role of termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer Science+Business Media BV, London, New York, pp 439–475Google Scholar
  9. Buchli HR (1950) Recherche sur la fondation et le développement des nouvelles colonies chez le termite lucifuge (Reticulitermes lucifugus (Rossi). Physiologia Comparata et Oecologia 2:145–160Google Scholar
  10. Buchli HR (1956) Le cycle de developpement des castes chez Reticulitermes. Insectes Soc 3:395–401Google Scholar
  11. Buchli HR (1958) L’origine des castes et les potentialities ontogeniques des termites europeens du genre Reticulitermes Holmgren. Annales des Sciences Naturelles Zoologie et Biologie Animale 11:263–429Google Scholar
  12. Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428PubMedGoogle Scholar
  13. Cleveland LR (1924) The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes (Kollar). Biol Bull 46:203–223Google Scholar
  14. Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biol Bull 48:309–326Google Scholar
  15. Cook TJ, Gold RE (2000) Effects of different cellulose sources on the structure of the hindgut flagellate community in Reticulitermes virginicus (Isoptera: Rhinotermitidae). Sociobiology 35:119–130Google Scholar
  16. Cook SF, Scott KG (1933) The nutritional requirements of Zootermopsis (Termopsis) angusticollis. J Cell Comp Physiol 4:95–110Google Scholar
  17. Duarte S, Duarte M, Borges PAV, Nune L (2017) Dietary-driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clement. J Appl Entomol 141:300–307Google Scholar
  18. Esenther GR (1969) Termites in Wisconsin. Ann Entomol Soc Am 62:1274–1284Google Scholar
  19. Forschler BT, Henderson G (1995) Subterranean termite behavioral reaction to water and survival of inundation: implications for field, populations. Environ Entomol 24:1592–1597Google Scholar
  20. Ghesini S, Marini M (2012) New data on Reticulitermes urbis and Reticulitermes lucifugus in Italy: are they both native species? Bull Insectol 65:301–310Google Scholar
  21. Grassi B (1917) Flagellati viventi nei termiti. Memorie della Reale Accademia dei Lincei 5:331–394Google Scholar
  22. Grassi GB, Foa A (1911) Intorno ai protozoi dei termitidi. Rendiconti della Reale Accademia dei Lincei 20:725–741Google Scholar
  23. Grosovsky BDD, Margulis L (1982) Termite microbial communities. In: Burns RG, Slater JH (eds) Experimental microbial ecology, Ch. 30. Blackwell Scientific Publications, Oxford, pp 519–532Google Scholar
  24. Haverty MI, Howard RW (1979) Effects of insect regulators on subterranean termites: induction of differentiation, defaunation, and starvation. Ann Entomol Soc Am 72:503–508Google Scholar
  25. Hendee L (1934) Caste determination and differentiation with special reference to the genus Reticulitermes (Isoptera). J Morphol 56:267–293Google Scholar
  26. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedPubMedCentralGoogle Scholar
  27. Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, London, pp 1–36Google Scholar
  28. Hu XP, Song D, Gao X (2011) Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insectes Soc 58:39–45Google Scholar
  29. Hungate RE (1943) Quantitative analysis on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739Google Scholar
  30. Inoue T, Murashima K, Azuma J-I, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242PubMedGoogle Scholar
  31. Kirby H (1924) Morphology and mitosis of Dinenympha fimbriata sp. nov. Univ Calif Publ Zool 26:199–221Google Scholar
  32. LaFage JP (1976) Nutritional biochemistry, bioenergetics, and nutritive value of the dry-wood termite, Marginitermes hubbardi (Banks). Dissertation, University of Arizona, TucsonGoogle Scholar
  33. LaFage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, London, pp 165–232Google Scholar
  34. Lai PY, Tamashiro M, Fujii JK (1983) Abundance and distribution of the three species of symbiotic protozoa in the hindgut of Coptotermes formosanus (Isoptera: Rhinotermitidae). Proc Hawaii Entomol Soc 24:271–276Google Scholar
  35. Leidy J (1877) On the intestinal parasites of Termes flavipes. Proc Acad Nat Sci Phila 29:146–149Google Scholar
  36. Lo Pinto M, Varrica G, Agrò A (2016) Temporal variations in symbiotic hindgut protist community of the subterranean termite Reticulitermes lucifugus Rossi in Sicily. Insectes Soc 63:143–154Google Scholar
  37. Lo Pinto M, Varrica G, Agrò A (2017) Studies on Reticulitermes lucifugus Rossi (Isoptera: Rhinotermitidae): a review of associated hindgut flagellates and investigations on protist species of the Sicilian subspecies, R. lucifugus “Sicily”. J Entomol Zool Stud 5(4):1249–1256. CrossRefGoogle Scholar
  38. Luchetti A, Bergamaschi S, Marini M, Mantovani B (2004) Mitochondrial DNA analysis of native European Isoptera: a comparison between Reticulitermes (Rhinotermitidae) and Kalotermes (Kalotermitidae) colonies from Italy and Balkans. Redia J Zool 87:149–153Google Scholar
  39. Luchetti A, Velonà A, Mueller M (2013) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinothermitidae). Insectes Soc 60:203–211Google Scholar
  40. Mannesmann R (1972) Relationship between different wood species as a termite food source and the reproduction of termite symbionts. J Appl Entomol 72:116–128Google Scholar
  41. Mannesmann R (1973) Comparison of twenty-one commercial wood species from North America in relation to feeding rates of the Formosan termite, Coptotermes formosanus Shiraki. Material und Organismen 8:107–120Google Scholar
  42. Mauldin JK, Smythe RV, Baxter CC (1972) Cellulose catabolism and lipid synthesis by the subterranean termite, Coptotermes formosanus. Insect Biochem 2:209–217Google Scholar
  43. Mauldin JK, Carter FL, Rich NM (1981) Protozoan populations of Reticulitermes flavipes (Kollar) exposed to heartwood blocks of 21 American species. Material und Organismen 16:15–28Google Scholar
  44. McMahan EA (1963) A study of termite feeding relationship, using radioisotopes. Ann Entomol Soc Am 56:74–82Google Scholar
  45. Moore BP (1969) Biochemical studies in termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, London, pp 407–432Google Scholar
  46. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of the termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266PubMedGoogle Scholar
  47. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352PubMedGoogle Scholar
  48. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, Heidelberg, London, New York, pp 413–438Google Scholar
  49. Osbrink WLA, Lax A (2002) Effect of tolerance to insecticides on substrate penetration by Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 95:989–1000PubMedGoogle Scholar
  50. Powell WN (1928) On the morphology of Pyrsonympha with a description of three new species from Reticulitermes hesperus (Banks). Univ Calif Publ Zool 31:179–200Google Scholar
  51. Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80PubMedGoogle Scholar
  52. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  53. Raina A, Park YI, Lax A (2004) Defaunation leads to cannibalism in primary reproductives of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:753–756Google Scholar
  54. Sbrenna G, Micciarelli Sbrenna A (2008) Le termiti italiane. Catalogo topografico e considerazioni zoogeografiche. Memorie della Società Entomologica Italiana 87:33–60Google Scholar
  55. Scharf ME, Karl ZJ, Sethi A, Boucias DG (2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One 6(7):e21709. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Seifert K, Becker G (1965) Der chemische Abbau von Laub-und Nadelholzarten durch verschiedene Termiten. Holzforschung 19:105–111Google Scholar
  57. Smith JA, Koehler PG (2007) Changes in Reticulitermes flavipes (Isoptera: Rhinotermitidae) gut xylanolytic activities in response to dietary xylan content. Ann Entomol Soc Am 100:568–573Google Scholar
  58. Smythe RV, Carter FL (1970) Feeding responses to sound wood by Coptotermes formosanus, Reticulitermes flavipes, and R. virginicus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 63:841–847Google Scholar
  59. Smythe RV, Mauldin JK (1972) Soldier differentiation, survival, and wood consumption by normally and abnormally faunated workers of the Formosan termite, Coptotermes formosanus. Ann Entomol Soc Am 65:1001–1004Google Scholar
  60. Smythe RV, Williams LH (1972) Feeding and survival of two subterranean termite species at constant temperatures. Ann Entomol Soc Am 65:226–229Google Scholar
  61. Song D, Hu XP, Su N-Y (2006) Survivorship, cannibalism, body weight loss, necrophagia, and entombment in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus under starvation (Isoptera: Rhinotermitidae). Sociobiology 47:27–39Google Scholar
  62. Stuart AM (1969) Social behaviour and communication. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, London, pp 193–232Google Scholar
  63. Su N-Y, LaFage JP (1986) Effects of starvation on survival and maintenance of soldier proportion in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 79:312–316Google Scholar
  64. Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:e25. CrossRefGoogle Scholar
  65. Tsukagoshi H, Nakamura A, Ishida T, Otagiri M, Moriya S, Samejima M, Igarashi K, Kitamoto K, Arioka M (2014) The GH26 b-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: Heterologous expression and characterization. Biochem Biophys Res Commun 452:520–525PubMedGoogle Scholar
  66. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632PubMedGoogle Scholar
  67. Weesner FM (1956) The biology of colony foundation in Reticulitermes hesperus Banks. Univ Calif Publ Zool 61:253–314Google Scholar
  68. Wheeler MM, Zhou X, Scharf ME, Oi FM (2007) Molecular and biochemical markers for monitoring dynamic shifts of cellulolytic protozoa in Reticulitermes flavipes. Insect Biochem Mol Biol 37:1366–1374PubMedGoogle Scholar
  69. Wilson EO (1971) The insect societies. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  70. Yoshimura T (1995) Contribution of the protozoan fauna to nutritional physiology of the low termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 82:68–129Google Scholar
  71. Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) III: utilization of non-natural celluloses. Mokuzai Gakkaishi 39:1322–1326Google Scholar
  72. Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1994) Changes of wood-attacking activity of the lower termite, Coptotermes formosanus Shiraki in defaunation-refaunation process of the intestinal protozoa. Material und Organismen 28:153–164Google Scholar
  73. Yoshimura T, Fujino T, Itoh T, Tsunoda K, Takahashi M (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50:99–104Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Department of Agricultural, Food and Forest SciencesUniversity of PalermoPalermoItaly

Personalised recommendations