Advertisement

Insectes Sociaux

, Volume 66, Issue 3, pp 413–424 | Cite as

Population genetic structure of native Iranian population of Apis mellifera meda based on intergenic region and COX2 gene of mtDNA

  • M. Modaber
  • J. Nazemi RafieEmail author
  • H. Rajabi-MahamEmail author
Research Article

Abstract

The role of honeybees is demonstrated in pollination and increasing crop production. The two factors, migration and importation of queens, affect biodiversity of honeybee populations. Sampling was conducted from all provinces (31 provinces) of Iran in the spring and summer seasons of 2015. The tRNAleu gene, intergenic region and partial COX2 gene were used for studying honeybee populations. The phylogenetic trees were depicted using MrBayes 3.2 software by the Bayesian method and PAUP software by the Parsimony method. Results demonstrated that intergenic region and COX2 gene could segregate subspecies and evolutionary lineages from each other. A comparison of A. m. meda with some commercial subspecies demonstrated that there were 16 nucleotide differences in the intergenic regions and partial COX2 gene; 10 and 6 nucleotide differences were found in the intergenic regions and partial COX2, respectively. Results indicated that all intergenic regions of collected samples from Iran (subspecies of A. m. meda and A. m. carnica) only had the Q sequence. This study illustrated that A. m. meda was grouped into five haplotypes. The findings demonstrated that the least nucleotide diversity and segregating sites were related to the A. m. meda subspecies (π = 0.0020, S = 2). Moreover, the most nucleotide diversity and segregating sites were found in subspecies of A. m. iberiensis (π = 0.0075, S = 17). Findings showed that samples of Chramahal va Bakhtiari, Golestan, Eastern Azarbayejan, Tehran, Southern Khorasan, Shiraz, Qazvin, Mazandaran, Lorestan, Khozestan, Kordestan, Kermanshah and Sistan-Blochestan were grouped with subspecies of A. m. meda KY464957 (honeybee worker of A. m. meda from the Ruttner Bee Collection at the Bee Research Institute at Oberursel, Germany). Furthermore, the Iranian samples of Kohkeloye va Boyerahmad, Ardabil, Zanjan, Kerman and Yazd were grouped with A. m. meda FJ357806 (identified haplotype in Hakkari of Turkey, near the Iraq border). Comparisons of honeybee subspecies demonstrated that A. m. jemenitica (Y lineage) collected from Ethiopia demonstrated the highest genetic distance compared to A. m. meda (0.024–0.027). Genetic structure and demography analysis showed well-structured and normal expanding populations for all subspecies and lineages of Apis genus. Analysis by Structure and Bayesian Analysis of Population Structure (BAPS) revealed the four main clusters of Apis genus in all lineages, concordant with the results of the phylogenetic trees and MDS analysis. These four significant clusters included A, C, Y and Z lineages of honeybee and the M lineage was classified with the C lineage.

Keywords

Apis mellifera meda Genetic diversity Population structure Iran 

Notes

Acknowledgements

The authors would like to thank the Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Iran for their financial assistance.

References

  1. Alattal Y, Alsharhi M, Alghamdi A, Alfaify S, Mighdadi H (2014) Characterization of the native honey bee subspecies in Saudi Arabia using the mtDNA COI–COII intergenic region and morphometric characteristics. Bull Insectol 67:31–37Google Scholar
  2. Alburaki M, Moulin S, Legout H, Alburaki A, Garnery L (2011) Mitochondrial structure of Eastern honey bee populations from Syria, Lebanon and Iraq. Apidologie 42:628–641Google Scholar
  3. Arias MC, Sheppard WS (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol 5:557–566Google Scholar
  4. Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505Google Scholar
  5. Cánovas F, De la Rúa P, Serrano J, Galián J (2011) Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie 42:235–251Google Scholar
  6. Cardoso A, Pearse DE, Jacobson S, Marshal J, Dalrymple D, Kawasaki F, Ruiz-Campos G, Garza JC (2016) Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. Conserv Genet 17:675–689Google Scholar
  7. Charistos L, Hatjina F, Bouga M, Mladenovic MD, Maistros A (2014) Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. J Apicul Sci 58:75–84Google Scholar
  8. Chen C, Liu Z, Pan Q, Chen X, Wang H, Guo H, Liu S, Lu H, Tian S, Li R, Shi W (2016) Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. spp. Mol Biol Evol 33:1337–1348Google Scholar
  9. Cornuet JM, Garnery L (1991) Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie 22:627–642Google Scholar
  10. Cornuet JM, Garnery L, Solignac M (1991) Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics 128:393–403Google Scholar
  11. Cridland JM, Tsusui ND, Ramirez SR (2017) The complex demographic history and evolutionary origin of the western honey bee, Apis mellifera. Genome Biol Evol 9:457–472Google Scholar
  12. De la Rúa P, Galián J, Pedersen BV, Serrano J (2006) Molecular characterization and population structure of Apis mellifera from Madeira and the Azores. Apidologie 37:699–708Google Scholar
  13. De la Rúa P, Jaffé R, Dall’Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284Google Scholar
  14. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797Google Scholar
  15. Eimanifar A, Kimball RT, Braun EL, Fuchs S, Grünewald B, Ellis JD (2017) The complete mitochondrial genome of Apis mellifera meda (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B 2:268–269Google Scholar
  16. Engel M (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). J Hym Res 8:165–196Google Scholar
  17. Evans DJ, Schwarz RS, Chen YP, Budge G, Cornman RS, Delarua P, Miranda J, Foret S, Foster L, Gauthier L, Genersch E, Gisder S, Jarosch A, Kucharski R, Lopez D, Lun DM, Moritz R, Maleszka R, Muñoz I, Pinto MA (2013) Standard methods for molecular research in Apis mellifera. J Apicul Sci 52:8–15Google Scholar
  18. Excoffier L, Laval G, Schneider S (2005) Arlequin, version 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  19. Franck P, Garnery L, Solignac M, Cornuet JM (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52:1119–1134Google Scholar
  20. Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430Google Scholar
  21. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752Google Scholar
  22. Garnery L, Vautrin D, Cornuet JM, Solignac M (1991) Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie 22:87–92Google Scholar
  23. Garnery L, Cornue JM, Solignac M (1992) Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154Google Scholar
  24. Garnery L, Solignac M, Celebrano G, Cornuet JM (1993) A simple test using PCRamplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021Google Scholar
  25. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet JM, Solignac M (1998) Genetic diversity of the west European honeybee (Apis mellifera mellifera and Apis mellifera iberica) II. Microsatellite loci. Genet Sel Evol 30:49–79Google Scholar
  26. Ghasemi-Khademi T, Rajabi-Maham H, Pashaei-Rad P (2018) Genetic diversity evaluation of Persian honeybees (Apis mellifera meda) in North West of Iran, using microsatellite markers. J Wildl Biodivers 2:37–46Google Scholar
  27. Hall HG (1986) DNA differences found between Africanized and European honeybees. Proc Natl Acad Sci 83:4874–4877Google Scholar
  28. Hall HG (1990) Parental analysis of introgressive hybridization between african and european honeybees using nuclear DNA RFLPs. Genetics 125:611–621Google Scholar
  29. Han F, Wallberg A, Webster M (2012) From where did the Western honeybee (Apis mellifera) originate? J Ecol Evol 2:1949–1957Google Scholar
  30. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc London 270:313–322Google Scholar
  31. Hepburn HR, Radloff SE (2011) Honeybee of Asia. Springer, HeidelbergGoogle Scholar
  32. Hung C, Drovetski SV, Zink RM (2012) Multi locus coalescence analyses support a mtDNA based phylogeographic history for a widespread Palearctic passerine bird, Sitta europaea. Evolution 66:2850–2864Google Scholar
  33. Hunt JG, Page ER (1992) Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor Appl Genet 85:15–20Google Scholar
  34. Jabbari A, Farhoud H, Kence M (2005) Morphometric and MtDNA analysis in honeybee populations (Apis melifera L.) of north and north-west iran. In: 1th Balkan scientific conference of biology, Plovdiv, BulgariaGoogle Scholar
  35. Jara L, Muñoz I, Cepero A, Martín-Hernández R, Serrano J, Higes M, De la Rúa P (2015) Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci Nat 102:53–60Google Scholar
  36. Kandemir I, Ozkan A, Moradi M (2004) A scientific note on allozyme variability in Persian honey bees (Apis mellifera meda) from the Elburz mountains in Iran. Apidologie 35:521–522Google Scholar
  37. Kauhausen Kelle D, Keller R (1994) Morphometrical control of pure race breeding of honeybee (Apis mellifera L.). Apidologie 25:133–143Google Scholar
  38. Kence M, Jabbari Farhoud F, Ivgin Tunca R (2009) Morphometric and genetic variability of honey bee (Apis mellifera L.) populations from northern Iran. J Apicult Res 48:247–255Google Scholar
  39. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Roy Soc London 274:303–313Google Scholar
  40. Meixner MD, Leta MA, Koeniger N, Fuchs S (2011) The honey bees of Ethiopia represent a new subspecies of Apis mellifera simensis. Apidologie 42:425–437Google Scholar
  41. Meixner MD, Pinto MA, Bouga M, Kryger P, Ivanova E, Fuchs S (2013) Standard methods for characterising subspecies and ecotypes of Apis mellifera. J Apicul Res 52:1–28Google Scholar
  42. Molaei M, Dolati L, Tahmasebi G (2013) Genetic diversity assessment of Iranian honey bee population in Northwest Iran using microsatellite markers and morphological characteristics. Anim Sci J 27:3–16Google Scholar
  43. Moritz RFA, Hawkins CF, Crozier RH, Mackinley AG (1986) A mitochondrial DNA polymorphism in honeybees (Apis mellifera L.). Cell Mol Life Sci 42:322–324Google Scholar
  44. Muñoz I, Henriques D, Johnston JS, Chávez-Galarza J, Kryger P (2015) Reduced SNP panels for genetic indentification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PLoS ONE 10:1–18Google Scholar
  45. Muñoz I, Henriques D, Jara L, Johnston JS, Chávez-Galarza J, De la Rúa P, Pinto MA (2016) SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol Ecol Resour 17:783–795Google Scholar
  46. Nawrocka A, Kandemir I, Fuchs S, Tofilski A (2017) Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie 49:172–184Google Scholar
  47. Oldroyd BP, Cornuet JM, Rowe D, Rinderer ET (1995) Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325Google Scholar
  48. Oleksa A, Tofilski A (2015) Wing geometric morphometrics and microsatellite analysis pro-vide similar discrimination of honey bee subspecies. Apidologie 46:49–60Google Scholar
  49. Ozdil F, Fakhri B, Meydan H (2009a) Mitochondrial DNA variation in the CoxI–CoxII intergenic region among Turkish and Iranian HoneyBees (Apis mellifera L.). Biochem Genet 47:717–721Google Scholar
  50. Ozdil F, Yildiz MA, Hall HG (2009b) Molecular characterization of Turkish honey bee populations (Apis mellifera L.) inferred from mitochondrial DNA RFLP and sequence results. Apidologie 40:570–576Google Scholar
  51. Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States. Genetics 170:1653–1665Google Scholar
  52. Pinto MA, Henriques D, Chávez-Galarza J, Kryger P, Garnery L, van der Zee R, Dahle B, Soland-Reckeweg G, de la Rúa P, Dall Olio R, Carreck NL, Johnston S (2014) Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J Apicul Res 53:269–278Google Scholar
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  54. Rahimi A (2015) Study of the genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations using the mtDNACOI–COII intergenic region. Biologija 61:54–59Google Scholar
  55. Rahimi A, Miromayedi A, Kahrizi D, Abdolshahi R, Kazemi E, Yari KH (2014) Microsatellite genetic diversity of Apis mellifera meda skorikov. Mol Biol Rep 41:7755–7761Google Scholar
  56. Rahimi A, Mirahmadi A, Kahrizi D, Zarei L, Jamali S (2016) Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cell Mol Biol (Noisy-le-grand) 62:52–58Google Scholar
  57. Rahimi A, Mirmoayedi A, Kahrizi D, Zarei L, Jamali S (2018) Genetic variation in Iranian Honey bees, Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) Inferred from PCR-RFLP Analysis of two mtDNA Gene Segments (COI and 16S rDNA). Sociobiology 65:482–490Google Scholar
  58. Rhymer JM, Simberloff D (1996) Extension by hybridization and introgression. Annu Rev Ecol Syst 27:83–109Google Scholar
  59. Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  60. Royan M, Rahimi G, Esmaeilkhanian S, Mirhoseini SZ, Ansari Z (2007) A study on the genetic diversity of the Apis mellifera meda population in the south coast of the Caspian Sea using microsatellite markers. J Apicul Res 46:236–241Google Scholar
  61. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, BerlinGoogle Scholar
  62. Ruttner F, Pourasghar D, Kauhausen D (1985) Honeybees of Iran. Apis mellifera meda skorikow the Persian bee. Apidologie 16:241–264Google Scholar
  63. Sahebzadeh N, Rakhshani E, Tajabadi N (2017) Genetic polymorphism of Iranian populations of Apis mellifera meda using microsatellite markers. Dissertation, Univrsity of zabol, IranGoogle Scholar
  64. Sammataro D, Avitabil A (2011) Beekeepers’s handbook. Cornell University Press, IthacaGoogle Scholar
  65. Shahrestani N (2012) Honeybee and beekeeping. Sepehr Publication, TehranGoogle Scholar
  66. Sheppard W, Mixner M (2003) Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 34:367–375Google Scholar
  67. Sheppard WS, Smith DR (2000) Identification of Africanderived bees in the Americas: a survey of methods. Ann Entomol Soc Am 93:159–176Google Scholar
  68. Tajima F (1983) Evolutionary relationship of DNA sequences in finitepopulations. Genetics 105:437–460Google Scholar
  69. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013a) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Bio Evol 30:2725–2729Google Scholar
  70. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013b) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729Google Scholar
  71. Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, Simões ZL, Allsopp MH, Kandemir I, De la Rúa P, Pirk CW, Webster MT (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088Google Scholar
  72. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645Google Scholar
  73. Wright S (1978) Evolution and the genetics of populations, vol 4 variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Plant Protection Department, Faculty of AgricultureUniversity of KurdistanSanandajIran
  2. 2.Animal Sciences and Biotechnology Department, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran

Personalised recommendations