Advertisement

Alates of the termite Reticulitermes flaviceps feed independently during their 5-month residency in the natal colony

  • Z. Khan
  • M. Zhang
  • Y. F. Meng
  • J. Zhao
  • X. H. Kong
  • X. H. Su
  • L. X. XingEmail author
Research Article

Abstract

Reticulitermes flaviceps is an invasive subterranean termite in China. The alates of this species stay in their natal colony for about 5 months before dispersal flight. Due to lack of nutrition information of the alates from appearance to swarming, the feeding and trophallactic behaviour of this species were measured using neutral red and rubidium (Rb) tracers. Groups of alates, workers (over 5th-instar), nymphs (6–8th-instar), or soldiers were separately placed into a single petri dish with neutral red liquid stained filter paper for alimentary tract observation. With the exception of soldiers, red-dyed food was all observed in the alimentary tracts of workers, alates, and nymphs, suggesting that workers, alates, and nymphs all feed themselves in the colony. In the rubidium feeding study, over 5-instar workers, alates and soldiers were fed directly on filter papers treated with different concentrations of Rb for 3 days. Workers and alates received the most Rb at the end of the feeding test, suggesting that workers and alates are the feeding castes in R. flaviceps. Soldiers did not feed Rb-treated filter paper, indicating that they do not feed directly on wood. In the trophallactic study, both workers and alates acted as donors and recipients when paired with other workers and alates, and as donors for soldiers. Workers as donors can transfer food to both workers and soldiers with 1.02% and 0.5% transfer efficiencies, respectively, but rarely provide food for alates. Alates as donors can transfer food to other alates, with a transfer efficiency of 1.05%, but rarely provide food for workers and soldiers. These results suggest that during the 5–6 month stay in the natal colony, alates of R. flaviceps feed independently of other castes.

Keywords

Termite alate Reticulitermes flaviceps Rb tracer Trophallaxis Nutrition 

Notes

Acknowledgements

We thank Prof. Derek William Dunn for his language corrections and the anonymous reviewers for their valuable comments and advice that improved this article. This study was funded by the National Science Foundation of China (31170363, 31370428, 31870389) from the National Natural Science Foundation of China, the Northwest University Graduate student Programme for independent innovation (YZZ17161) and Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Almeida CS, Cristaldo PF, Desouza O, Bacci L, Florencio DF, Cruz NG, Santos AA, Santana AS, Oliveira AP, Lima AP, Araújo AP (2018) Resource density regulates the foraging investment in higher termite species. Ecol Entomol 43(3):371–378.  https://doi.org/10.1111/een.12508 CrossRefGoogle Scholar
  2. Arab A, Costa-Leonardo AM (2012) Dynamics of foraging and recruitment behavior in the Asian subterranean termite Coptotermes gestroi (Rhinotermitidae). Psyche J Entomol 2012:1–7.  https://doi.org/10.1155/2012/806782 (Article ID 806782) CrossRefGoogle Scholar
  3. Ayayee PA, Jones SC, Sabree ZL (2015) Essential amino acid provisioning by termite-associated gut microbiota. Peer J.  https://doi.org/10.7717/peerj.1218 Google Scholar
  4. Bagnères AG, Hanus R (2015) Communication and social regulation in termites. Social recognition in invertebrates. Springer, Cham, pp 193–248.  https://doi.org/10.1007/978-3-319-17599-7_11 CrossRefGoogle Scholar
  5. Bagnères AG, Pichon A, Hope J, Davis RW, Clément JL (2009) Contact versus feeding intoxication by fipronil in Reticulitermes termites (Isoptera: Rhinotermitidae): laboratory evaluation of toxicity, uptake, clearance, and transfer among individuals. J Econ Entomol 102:347–356.  https://doi.org/10.1603/029.102.0145 CrossRefGoogle Scholar
  6. Brahma A, Mandal S, Gadagkar R (2018) Emergence of cooperation and division of labor in the primitively eusocial wasp Ropalidia marginata. Proc Natl Acad Sci USA 115(4):756–761.  https://doi.org/10.1073/pnas.1714006115 CrossRefGoogle Scholar
  7. Brodschneider R, Libor A, Kupelwieser V, Crailsheim K (2017) Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution. PLoS One 12(3):0174684.  https://doi.org/10.1371/journal.pone.0174684 CrossRefGoogle Scholar
  8. Buczkowski G, Wang C, Bennett G (2007) Immunomarking reveals food flow and feeding relationships in the eastern subterranean termite, Reticulitermes flavipes (Kollar). Environ Entomol 36:173–182.  https://doi.org/10.1603/0046-225X(2007)36%5b173:IRFFAF%5d2.0.CO;2 CrossRefGoogle Scholar
  9. Cabrera BJ, Rust MK (1999) Caste differences in feeding and trophallaxis in the western drywood termite, Incisitermes minor (Hagen) (Isoptera, Kalotermitidae). Insect Soc 46:244–249.  https://doi.org/10.1007/s000400050141 CrossRefGoogle Scholar
  10. Chouvenc T, Su NY (2014) Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insect Soc 61:171–182.  https://doi.org/10.1007/s00040-014-0343-9 CrossRefGoogle Scholar
  11. Chouvenc T, Efstathion CA, Elliott ML, Su NY (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Roy Soc Lond B 280:20131885.  https://doi.org/10.1098/rspb.2013.1885 CrossRefGoogle Scholar
  12. Chouvenc T, Basille M, Su NY (2015a) The production of soldiers and the maintenance of caste proportions delay the growth of termite incipient colonies. Insect Soc 62:23–29.  https://doi.org/10.1007/s00040-014-0369-z CrossRefGoogle Scholar
  13. Chouvenc T, Mullins AJ, Su NY (2015b) Rare production of nymphs in an Asian subterranean termite (Isoptera: Rhinotermitidae) incipient colony. Florida Entomol 98:972–973.  https://doi.org/10.1653/024.098.0327 CrossRefGoogle Scholar
  14. Chouvenc T, Helmick EE, Su NY (2015c) Hybridization of two major termite invaders as a consequence of human activity. PLoS One 10(3):e0120745.  https://doi.org/10.1371/journal.pone.0120745 CrossRefGoogle Scholar
  15. Contrera FAL, Imperatriz-Fonseca VL, Koedam D (2010) Trophallaxis and reproductive conflicts in social bees. Insect Soc 57:125–132.  https://doi.org/10.1007/s00040-009-0058-5 CrossRefGoogle Scholar
  16. Cornelius ML, Gallatin EM (2015) Task allocation in the tunneling behavior of workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. J Asia Pac Entomol 18(4):637–642.  https://doi.org/10.1016/j.aspen.2015.07.017 CrossRefGoogle Scholar
  17. Costa-Leonardo AM, Haifig I (2014) Termite communication during different behavioral activities. Biocommunication of animals. Springer, Dordrecht, pp 161–190.  https://doi.org/10.1007/978-94-007-7414-8_10 CrossRefGoogle Scholar
  18. De Marco RJ, Farina WM (2003) Trophallaxis in forager honeybees (Apis mellifera): resource uncertainty enhances begging contacts? J Comp Physiol A 189:125–134.  https://doi.org/10.1007/s00359-002-0382-y Google Scholar
  19. DeGrandi-Hoffman G, Hagler J (2000) The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker. Insect Soc 47:302–306.  https://doi.org/10.1007/PL00001720 CrossRefGoogle Scholar
  20. Du H, Chouvenc T, Osbrink WL, Su NY (2016a) Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insect Soc 63:279–290.  https://doi.org/10.1007/s00040-016-0464-4 CrossRefGoogle Scholar
  21. Du H, Chouvenc T, Osbrink WL, Su NY (2016b) Heterogeneous distribution of caste/instar and behaviors in Coptotermes formosanus Shiraki. Insectes Soc 63:279–290.  https://doi.org/10.1007/s00040-016-0520-0 CrossRefGoogle Scholar
  22. Du H, Chouvenc T, Su NY (2017) Development of age polyethism with colony maturity in Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 46:311–318.  https://doi.org/10.1093/ee/nvw162 Google Scholar
  23. Ellis S, Robinson EJ (2015) The role of non-foraging nests in polydomous wood ant colonies. PLoS One 10(10):p.e0138321.  https://doi.org/10.1371/journal.pone.0138321 CrossRefGoogle Scholar
  24. Feigenbaum C, Naug D (2010) The influence of social hunger on food distribution and its implications for disease transmission in a honeybee colony. Insect Soc 57:217–222.  https://doi.org/10.1007/s00040-010-0073-6 CrossRefGoogle Scholar
  25. Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA (2018) Quantifying the unquantifiable: why Hymenoptera—not Coleoptera—is the most speciose animal order. bioRxiv.  https://doi.org/10.1186/s12898-018-0176-x Google Scholar
  26. Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): Possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123.  https://doi.org/10.1046/j.1365-3032.2001.00224.x CrossRefGoogle Scholar
  27. Funaro CF, Böröczky K, Vargo EL, Schal C (2018) Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1721419115 Google Scholar
  28. Gathalkar G, Sen A (2018) Foraging and Predatory Activities of Ants. Chapter 3. IntechOpen, pp 1–21.  https://doi.org/10.5772/intechopen.78011
  29. Getty GM, Haverty MI, Copren KA, Lewis VR (2000) Response of Reticulitermes spp. (Isoptera: Rhinotermitidae) in northern California to baiting with hexaflumuron with sentricon termite colony elimination system. J Econ Entomol 93:1498–1507.  https://doi.org/10.1603/0022-0493-93.5.1498 CrossRefGoogle Scholar
  30. Guo X, Su S, Skogerboe G, Dai S, Li W, Li Z, Liu F, Ni R, Guo Y, Chen S, Zhang S, Chen R (2013) Recipe for abusy bee: microRNAs in honey bee caste determination. PLoS One 8:81661.  https://doi.org/10.1371/journal.pone.0081661 CrossRefGoogle Scholar
  31. Hagler JR, Machtley SA (2016) Administering and detecting protein marks on arthropods for dispersal research. J Vis Exp 107:e53693.  https://doi.org/10.3791/53693 Google Scholar
  32. Hagler JR, Baker PB, Marchosky R, Machtley SA, Bellamy DE (2009) Methods to mark termites with protein for mark–release–recapture and mark–capture type studies. Insect Soc 56(2):213–220.  https://doi.org/10.1007/s00040-009-0010-8 CrossRefGoogle Scholar
  33. Hagler JR, Blackmer F, Spurgeon DW (2015) Accuracy of a prey-specific DNA assay and a generic prey-immunomarking assay for detecting predation. Methods Ecol Evol 6(12):1426–1434.  https://doi.org/10.1111/2041-210X.12436 CrossRefGoogle Scholar
  34. Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 7:89–92.  https://doi.org/10.1098/rsbl.2010.0466 CrossRefGoogle Scholar
  35. Hanus R, Vrkoslav V, Hrdý I, Cvačka J, Šobotník J (2010) Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc R Soc B 277:995–1002.  https://doi.org/10.1098/rspb.2009.1857 CrossRefGoogle Scholar
  36. Hartke TR, Baer B (2011) The mating biology of termites: a comparative review. Anim Behav 82:927–936.  https://doi.org/10.1016/j.anbehav.2011.07.022 CrossRefGoogle Scholar
  37. Haverty MI, Tabuchi RL, Vargo EL, Cox DL, Nelson LJ, Lewis VR (2010) Response of Reticulitermes Hesperus (Isoptera: Rhinotermitidae) colonies to baiting with Lufenuron in Northern California. J Econ Entomol 103:770–780.  https://doi.org/10.1603/EC09088 CrossRefGoogle Scholar
  38. Hoover SE, Ovinge LP (2018) Pollen collection, honey production, and pollination services: managing honey bees in an agricultural setting. J Econ Entomol 111(4):1509–1516.  https://doi.org/10.1093/jee/toy125 CrossRefGoogle Scholar
  39. Huang QY, Wang WP, Mo RY, Lei CL (2008) Studies on feeding and trophallaxis in the subterranean termite. Entomol Exp Appl 129:210–215.  https://doi.org/10.1111/j.1570-7458.2008.00764.x CrossRefGoogle Scholar
  40. Huang Q, Guan C, Shen Q, Hu C, Zhu B (2012) Aggressive behavior and the role of antennal sensillae in the termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). Sociobiology 59:1239–1251Google Scholar
  41. Hyodo F, Matsumoto T, Takematsu Y, Kamoi T, Fukuda D, Nakagawa M, Itioka T (2010) The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. J Trop Ecol 26(2):205–214.  https://doi.org/10.1017/s0266467409990502 CrossRefGoogle Scholar
  42. Hyodo F, Takematsu Y, Matsumoto T, Inui Y, Itioka T (2011) Feeding habits of Hymenoptera and Isoptera in a tropical rain forest as revealed by nitrogen and carbon isotope ratios. Insect Soc 58(3):417.  https://doi.org/10.1007/s00040-011-0159-9 CrossRefGoogle Scholar
  43. Hyodo F, Matsumoto T, Takematsu Y, Itioka T (2015) Dependence of diverse consumers on detritus in a tropical rain forest food web as revealed by radiocarbon analysis. Funct Ecol 29(3):423–429.  https://doi.org/10.1111/1365-2435.12357 CrossRefGoogle Scholar
  44. Indrayani Y, Yoshimura T, Yanase Y, Fujii Y, Matsuoka H, Imamura Y (2007) Observation of feeding behavior of three termites (Isoptera) species: Incisitermes minor, Coptotermes formosanus, and Reticulitermes speratus. Sociobiology 49:121–134Google Scholar
  45. Iwata R, Monden A, Yoshikawa T, Kikuchi T, Yamane A (1999) Grooming and some other inter-individual behavioral actions in Reticulitermes speratus (Isoptera: Rhinotermitidae), with reference to the frequency of each action among castes and stages. Sociobiology 34:45–64Google Scholar
  46. Jeon W, Kang SY, Su NY, Lee SH (2010) A constraint condition for foraging strategy in subterranean termites. J Insect Sci 10(1):1–8.  https://doi.org/10.1673/031.010.14106 (Article 146) CrossRefGoogle Scholar
  47. Kakkar G, Chouvenc T, Osbrink W, Su NY (2016) Temporal assessment of molting in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 109(5):2175–2181.  https://doi.org/10.1093/jee/tow180 CrossRefGoogle Scholar
  48. Kakkar G, Osbrink W, Su NY (2018) Molting site fidelity accounts for colony elimination of the Formosan subterranean termites (Isoptera: Rhinotermitidae) by chitin synthesis inhibitor baits. Sci Rep 8(1):1259.  https://doi.org/10.1038/s41598-018-19603-8 CrossRefGoogle Scholar
  49. Khamala C, Buschinger A (1971) Effect of temperature and season on the food-transmission activity of three ant species as shown by radioactive tracers. Zeitschrift für Angewandte Entomologie 67:337–342.  https://doi.org/10.1111/j.1439-0418.1971.tb02132.x CrossRefGoogle Scholar
  50. Korb J (2016) Genes underlying reproductive division of labor in termites, with comparisons to social Hymenoptera. Front Ecol Evol 4:45.  https://doi.org/10.3389/fevo.2016.00045 CrossRefGoogle Scholar
  51. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world: 3. Neosioptera excluding Termitidae. AMNH Bull 377:625–971Google Scholar
  52. LeBoeuf AC, Grozinger CM (2014) Me and we: the interplay between individual and group behavioral variation in social collectives. Curr Opin Insect Sci 5:16–24.  https://doi.org/10.1016/j.cois.2014.09.010 CrossRefGoogle Scholar
  53. LeBoeuf AC, Waridel P, Brent CS, Gonçalves AN, Menin L, Ortiz D, Riba-Grognuz O, Koto A, Soares ZG, Privman E, Miska EA (2016) Oral transfer of chemical cues, growth proteins and hormones in social insects. eLIFE.  https://doi.org/10.7554/eLife.20375.002 Google Scholar
  54. LeBoeuf AC, Cohanim AB, Stoffel C, Brent CS, Waridel P, Privman E, Keller L, Benton R (2018) Molecular evolution of juvenile hormone esterase-like proteins in a socially exchanged fluid. bioRxiv 1:1–11.  https://doi.org/10.1101/337568 Google Scholar
  55. Lewis JL, Forschler BT (2017) Transfer of five commercial termite bait formulations containing benzoylphenyl urea chitin synthesis inhibitors within groups of the subterranean termite Reticulitermes flavipes (Blattodea: Rhinotermitidae). Int J Pest Manag 63:224–233.  https://doi.org/10.1080/09670874.2016.1241911 CrossRefGoogle Scholar
  56. Li HF, Lin JS, Lan YC, Pei KJC, Su NY (2011) Survey of the termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) in a Formosan pangolin habitat. Fla Entomol 94(3):534–538.  https://doi.org/10.1653/024.094.0318 CrossRefGoogle Scholar
  57. Li GH, Liu L, Lei CL, Huang QY (2014) A trade-off between antipredatory behavior and pairing competition produced by male-male tandem running in three Reticulitermes species. J Insect Sci 22(4):560–568.  https://doi.org/10.1111/1744-7917.12150 CrossRefGoogle Scholar
  58. Li Y, Dong ZY, Pan DZ, Pan CH, Chen LH (2017) Effects of termites on soil ph and its application for termite control in Zhejiang Province. China. Sociobiology 64(3):317–326.  https://doi.org/10.13102/sociobiology.v64i3.1674 CrossRefGoogle Scholar
  59. Masuoka Y, Yaguchi H, Suzuki R, Maekawa K (2015) Knockdown of the juvenile hormone receptor gene inhibits soldier-specific morphogenesis in the damp-wood termite Zootermopsis nevadensis (Isoptera: Archotermopsidae). Insect Biochem Mol Biol 64:25–31.  https://doi.org/10.1016/j.ibmb.2015.07.013 CrossRefGoogle Scholar
  60. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Nat Acad Sci 107:12963–12968.  https://doi.org/10.1073/pnas.1004675107 CrossRefGoogle Scholar
  61. Muratori F, Perremans D, Hance T (2005) Rubidium marking of Aphidius rhopalosiphi (Hymenoptera: Braconidae) on Sitobion avenae (Hemiptera: Aphididae) reared on a diet supplemented with RbCl. Eur J Entomol 102(3):489.  https://doi.org/10.14411/eje.2005.070 CrossRefGoogle Scholar
  62. Neoh K, Lee C, Lee C (2014) Effects of termiticide exposure on mutual interactions between the treated and untreated workers of the Asian subterranean termite. Pest Manag Sci 70:240–244.  https://doi.org/10.1002/ps.3544 CrossRefGoogle Scholar
  63. Nixon HL, Ribbands CR (1952) Food transmission within the honeybee community. Proc R Soc Br 140:43–50.  https://doi.org/10.1098/rspb.1952.0042 Google Scholar
  64. Nobre T, Nunes L, Bignell DE (2007) Estimation of foraging territories of Reticulitermes grassei through mark–release–recapture. Entomol Exp Appl 123(2):119–128.  https://doi.org/10.1111/j.1570-7458.2007.00530.x CrossRefGoogle Scholar
  65. Olugbemi BO (2013) Intra- and inter-colonial agonistic behavior in the termite Microcerotermes fuscotibialis Sjostedt (Isoptera, Termitidae, Termitinae). J Insect Behav 26:69–78.  https://doi.org/10.1007/s10905-012-9336-6 CrossRefGoogle Scholar
  66. Oshima M (1911) Discrimination between Termes flaviceps Oshima and Termes speratus Kolbe, and several remarks on the scientific names of Japanese termites. Insect World 15:355–363 (In Japanese) Google Scholar
  67. Oshima M (1912) The taxonomy and distribution of termites in Taiwan, pp. 54–94. In: M. Oshima (ed.) The Third Official Report on Termites. Taiwan Sotokufu, Taihoku, Japan (In Japanese)Google Scholar
  68. Otani S, Zhukova M, Kone NA, da Costa RR, Mikaelyan A, Sapountzis P, Poulsen M (2018) Gut microbial compositions mirror caste-specific diets in a major lineage of eusocial insects. bioRxiv.  https://doi.org/10.1101/418954 Google Scholar
  69. Pervez A (2018) Termite biology and social behaviour. Termit Sustain Manag.  https://doi.org/10.1007/978-3-319-72110-1_6 Google Scholar
  70. Piskorski R, Hanus R, Kalinova B, Valterova I, KŘeČek J, Bourguignon T, Roisin Y, Šobotník J (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae): geographic and temporal variations. Biol J Linnean Soc 98:384–392.  https://doi.org/10.1111/j.1095-8312.2009.01286.x CrossRefGoogle Scholar
  71. Rasib KZ, Wright DJ (2018) Comparative efficacy of three bait toxicants against the subterranean termite Reticulitermes Santonensis (Isoptera/Blattoidea: Rhinotermitidae). Biomed J Sci Tech Res 11(3):1–24.  https://doi.org/10.26717/BJSTR.2018.11.002107 Google Scholar
  72. Sethi A, Karl ZJ, Scharf ME (2016) Digestion of termiticide bait matrices by the pest termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). J Econ Entomol 109:982–986.  https://doi.org/10.1093/jee/tow017 CrossRefGoogle Scholar
  73. Siebers N, Martius C, Eckhardt KU, Garcia MV, Leinweber P, Amelung W (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS One 10(4):0123790.  https://doi.org/10.1371/journal.pone.0123790 CrossRefGoogle Scholar
  74. Sillam-Dusses D, Kalinova B, Jiroš P, Březinová A, Cvačka J, Hanus R, Šobotník J, Bordereau C, Valterova I (2009) Identification by GC-EAD of the two component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J Insect Physiol 55:751–757.  https://doi.org/10.1016/j.jinsphys.2009.04.007 CrossRefGoogle Scholar
  75. Stimmann MW (1974) Marking insects with rubidium: imported cabbageworm marked in the field. Environ Entomol 3(2):327–328.  https://doi.org/10.1093/ee/3.2.327 CrossRefGoogle Scholar
  76. Su NY (2018) Development of baits for population management of subterranean termites. Annu Rev Entomol 64:71–716.  https://doi.org/10.1146/annurev-ento-011118112429 Google Scholar
  77. Su L, Yang L, Huang S, Su X, Li Y, Wang F, Wang E, Kang N, Xu J, Song A (2016) Comparative gut microbiomes of four species representing the higher and the lower termites. J Insect Sci 16(1):97.  https://doi.org/10.1093/jisesa/iew081Krishna CrossRefGoogle Scholar
  78. Suárez ME, Thorne BL (2000) Rate, amount, and distribution pattern of alimentary fluid transfer via trophallaxis in three species of termites (Isoptera: Rhinotermitidae, Termopsidae). Ann Entomol Soc Am 93:145–155.  https://doi.org/10.1603/0013-8746(2000)093%5b0145:RAADPO%5d2.0.CO;2 CrossRefGoogle Scholar
  79. Traniello JF, Thorne BL (1994) Termite baits in theory and practice. Clemson University. In: Proceedings of the National Conference on Urban Entomology, pp 20–22Google Scholar
  80. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403.  https://doi.org/10.1146/annurev.ento.54.110807.090443 CrossRefGoogle Scholar
  81. Villamil N, Boege K, Stone G (2018) Ant-pollinator conflict results in pollinator deterrence but no nectar trade-offs. Front Plant Sci 9:1093.  https://doi.org/10.3389/fpls.2018.01093 CrossRefGoogle Scholar
  82. Xing LX, Yin LF, Kong XH, Liu MH, Wang K, Su XH (2014) Observations of grooming and trophallaxis in a Chinese subterranean termite, Reticulitermes aculabialis Tsai et Hwang (Isoptera: Rhinotermitidae). Chin J Ecol 33:149–154Google Scholar
  83. Yanagihara S, Suehiro W, Mitaka Y, Matsuura K (2018) Age-based soldier polyethism: old termite soldiers take more risks than young soldiers. Biol Lett 14(3):20180025.  https://doi.org/10.1098/rsbl.2018.0025 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  • Z. Khan
    • 3
  • M. Zhang
    • 3
  • Y. F. Meng
    • 3
  • J. Zhao
    • 3
  • X. H. Kong
    • 3
  • X. H. Su
    • 1
    • 2
    • 3
  • L. X. Xing
    • 1
    • 2
    • 3
    Email author
  1. 1.Shaanxi Key Laboratory for Animal Conservation (Northwest University)Xi’anChina
  2. 2.Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University)Ministry of EducationXi’anChina
  3. 3.College of Life SciencesNorthwest UniversityXi’anChina

Personalised recommendations