Advertisement

Population structure and sociogenetic organisation in a species with ergatoid queens, the desert ant Ocymyrmex robustior

  • N. Lecocq de PletincxEmail author
  • A. Kuhn
  • S. Aron
Research Article

Abstract

In ants, reproductive division of labour is typically associated with queen-worker dimorphism. In some species with ergatoid queens (wingless worker-like queens), this polymorphism is drastically reduced and virgin queens may integrate the worker force. While ergatoid queens have been described in several species, their colony and population genetic structure remain largely unstudied. Here, we investigated the population structure and sociogenetic organisation of the desert ant Ocymyrmex robustior. All Ocymyrmex species have only ergatoid queens that are worker-sized. Workers, queens, and males from a large population were genotyped at ten polymorphic microsatellite loci. Our results show that the study population is genetically structured, consistent with dependent colony foundation. Genetic analyses revealed that 17.6% of the males were diploid; diploid males are fertile, siring triploid females. Nests were typically headed by a single queen, and queens were strictly monandrous. However, several nests in the population shared matrilines, indicating polygyny, polydomy, dependent colony foundation, serial polygyny, or a combination of these processes. Dissections reveal that workers lay eggs in both queenright and queenless nests, while virgin ergatoid queens lay eggs in queenright nests only. However, our genetic analyses show that male offspring in queenright nests are all queen-produced, suggesting worker policing and/or trophic egg laying.

Keywords

Population genetics Colony structure Ergatoid queens Worker reproduction Ocymyrmex 

Notes

Acknowledgements

We thank Quentin Willot for his help on the field and Erik T. Frank for providing us the samples used for genomic library development. We are grateful to the Ministry of Environment and Tourism of Namibia (Permit No. 2268/2017) and Gobabeb Research and Training Center for granting us collection permits. This work was supported by PhD fellowships (ASP fellowship to N.L., FRIA fellowship to A.K.) as well as several grants (S.A.) from the Belgian Fonds National pour la Recherche Scientifique (FRS-FNRS).

Supplementary material

40_2019_697_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 KB)
40_2019_697_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 15 KB)
40_2019_697_MOESM3_ESM.txt (111 kb)
Supplementary material 3 (TXT 112 KB)

References

  1. Amor F, Villalta I, Doums C, Angulo E, Caut S, Castro S, Jowers MJ, Cerdá X, Boulay R (2016) Nutritional versus genetic correlates of caste differentiation in a desert ant. Ecol Entomol 41:660–667CrossRefGoogle Scholar
  2. André JB, Peeters C, Doums C (2001) Serial polygyny and colony genetic structure in the monogynous queenless ant Diacamma cyaneiventre. ‎Behav Ecol Sociobiol 50:72–80CrossRefGoogle Scholar
  3. Aron S, Mardulyn P, Leniaud L (2016) Evolution of reproductive traits in Cataglyphis desert ants: mating frequency, queen number, and thelytoky. Behav Ecol Sociobiol 70:1367–1379CrossRefGoogle Scholar
  4. Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154CrossRefGoogle Scholar
  5. Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12:456–463CrossRefGoogle Scholar
  6. Bolton B (1981) A revision of six minor genera of Myrmicinae (Hymenoptera Formicidae) in the Ethiopian Zoogeographical Region. Bull Br Mus Nat Hist Zool, Entomol ser (UK)Google Scholar
  7. Bolton B, Marsh AC (1989) The Afrotropical thermophilic ant genus Ocymyrmex (Hymenoptera: Formicidae). J Nat Hist 23:1267–1308CrossRefGoogle Scholar
  8. Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:673–683CrossRefGoogle Scholar
  9. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc Lond B: Biol Sci 364:3191–3207CrossRefGoogle Scholar
  10. Boomsma JJ (2013) Beyond promiscuity: mate-choice commitments in social breeding. Philos Trans R Soc Lond B: Biol Sci 368:20120050CrossRefGoogle Scholar
  11. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc London Ser B 351:947–975CrossRefGoogle Scholar
  12. Boomsma JJ, Kronauer DJC, Pedersen JS (2009) The evolution of social insect mating systems. In: Gadau J, Fewell J (eds) Organization of insect societies. Harvard University press, Cambridge, pp 3–25Google Scholar
  13. Boulay R, Aron S, Cerdá X, Doums C, Graham P, Hefetz A, Monnin T (2017) Social life in arid environments: the case study of Cataglyphis ants. Annu Rev Entomol 62:305–321CrossRefGoogle Scholar
  14. Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, 550 ppGoogle Scholar
  15. Bourke AF, Heinze J (1994) The ecology of communal breeding: the case of multiple-queen leptothoracine ants. Phil Trans R Soc Lond B 345:359–372CrossRefGoogle Scholar
  16. Brown MJ, Schmid-Hempel P (2003) The evolution of female multiple mating in social Hymenoptera. Evolution 57:2067–2081CrossRefGoogle Scholar
  17. Cahan SH, Vinson SB (2003) Reproductive division of labor between hybrid and nonhybrid offspring in a fire ant hybrid zone. Evolution 57:1562–1570CrossRefGoogle Scholar
  18. Cahan SH, Parker JD, Rissing SW, Johnson RA, Polony TS, Weiser MD, Smith DR (2002) Extreme genetic differences between queens and workers in hybridizing Pogonomyrmex harvester ants. Proc Royal Soc B 269:1871–1877CrossRefGoogle Scholar
  19. Chybicki IJ, Burczyk J (2008) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113CrossRefGoogle Scholar
  20. Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421CrossRefGoogle Scholar
  21. Cournault L, Aron S (2009) Diploid males, diploid sperm production, and triploid females in the ant Tapinoma erraticum. Naturwissenschaften 96:1393CrossRefGoogle Scholar
  22. Cronin AL, Molet M, Doums C, Monnin T, Peeters C (2013) Recurrent evolution of dependent colony foundation across eusocial insects. Annu Rev Entomol 58:37–55CrossRefGoogle Scholar
  23. Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Ann Zool Fenn 38:267–285Google Scholar
  24. Crozier RH, Page RE (1985) On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 18:105–115CrossRefGoogle Scholar
  25. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, Oxford, 314 ppGoogle Scholar
  26. Dai HD, Leeder JS, Cui Y (2014) A modified generalized Fisher method for combining probabilities from dependent tests. Front genet 5:32CrossRefGoogle Scholar
  27. Doums C, Ruel C, Clémencet J, Fédérici P, Cournault L, Aron S (2013) Fertile diploid males in the ant Cataglyphis cursor: a potential cost of thelytoky? ‎Behav Ecol Sociobiol 67:1983–1993CrossRefGoogle Scholar
  28. Foitzik S, Heinze J (1998) Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav Ecol 9:367–375CrossRefGoogle Scholar
  29. Foitzik S, Kureck IM, Rüger MH, Metzler D (2010) Alternative reproductive tactics and the impact of local competition on sex ratios in the ant Hypoponera opacior. Behav Ecol Sociobiol 64:1641–1654CrossRefGoogle Scholar
  30. Forder JC, Marsh AC (1989) Social organization and reproduction in Ocymyrmex foreli (Formicidae: Myrmicinae). Insectes Soc 36:106–115CrossRefGoogle Scholar
  31. Foster KR, Ratnieks FL (2000) Social insects: facultative worker policing in a wasp. Nature 407:692–693CrossRefGoogle Scholar
  32. Foster KR, Ratnieks FL (2001) Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc Royal Soc B 268:169–174CrossRefGoogle Scholar
  33. Foster KR, Ratnieks FL, Gyllenstrand N, Thorén PA (2001) Colony kin structure and male production in Dolichovespula wasps. Mol Ecol 10:1003–1010CrossRefGoogle Scholar
  34. Gobin B, Peeters C, Billen J (1998) Production of trophic eggs by virgin workers in the ponerine ant Gnamptogenys menadensis. Physiol Entomol 23:329–336CrossRefGoogle Scholar
  35. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  36. Harpur BA, Sobhani M, Zayed A (2013) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol Exp Appl 146:156–164CrossRefGoogle Scholar
  37. Hartmann A, Wantia J, Torres JA, Heinze J (2003) Worker policing without genetic conflicts in a clonal ant. PNAS 100:12346–12840Google Scholar
  38. Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. ‎Behav Ecol Sociobiol 19:115–122CrossRefGoogle Scholar
  39. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230CrossRefGoogle Scholar
  40. Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15:508–512CrossRefGoogle Scholar
  41. Heinze J, Hölldobler B, Alpert G (1999) Reproductive conflict and division of labor in Eutetramorium mocquerysi, a myrmicine ant without morphologically distinct female reproductives. Ethology 105:701–717CrossRefGoogle Scholar
  42. Heinze J, Smith TA (1990) Dominance and fertility in a functionally monogynous ant. Behav Ecol Sociobiol 27:1–10CrossRefGoogle Scholar
  43. Holldobler B, Bartz SH (1985) Sociobiology of reproduction in ants. In: Holldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer and Associates, Sunderland, pp 237–257Google Scholar
  44. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, 746 ppCrossRefGoogle Scholar
  45. Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CrossRefGoogle Scholar
  46. Hughes WOH, Ratnieks FLW, Oldroyd BP (2008a) Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J Evol Biol 21:1090–1095CrossRefGoogle Scholar
  47. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008b) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216CrossRefGoogle Scholar
  48. Ito F, Ohkawara K (2000) Production and behavior of ergatoid queens in two species of the Indonesian ponerine ant genus Leptogenys (diminuta-group) (Hymenoptera: Formicidae. Ann Entomol Soc Am 93:869–873CrossRefGoogle Scholar
  49. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555CrossRefGoogle Scholar
  50. Julian GE, Fewell JH (2004) Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Animal Behav 68:1–8CrossRefGoogle Scholar
  51. Julian GE, Fewell JH, Gadau J, Johnson RA, Larrabee D (2002) Genetic determination of the queen caste in an ant hybrid zone. Proc Natl Acad Sci USA 99:8157–8160CrossRefGoogle Scholar
  52. Katzerke A, Neumann P, Pirk CW, Bliss P, Moritz RF (2006) Seasonal nestmate recognition in the ant Formica exsecta. Behav Ecol Sociobiol 61:143–150CrossRefGoogle Scholar
  53. Keller L (1993) Queen number and sociality in insects. Oxford University Press, Oxford, 456 ppGoogle Scholar
  54. Keller L (1995) Social life: the paradox of multiple-queen colonies. Trends Ecol Evol 10:355–360CrossRefGoogle Scholar
  55. Kokko H, Johnstone RA, Clutton-Brock TH (2001) The evolution of cooperative breeding through group augmentation. Proc. Royal Soc. B 268:187–196CrossRefGoogle Scholar
  56. Krieger MJ, Ross KG, Chang CW, Keller L (1999) Frequency and origin of triploidy in the fire ant Solenopsis invicta. Heredity 82:142–150CrossRefGoogle Scholar
  57. Kuhn A, Bauman D, Darras H, Aron S (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213CrossRefGoogle Scholar
  58. Kureck IM, Jongepier E, Nicolai B, Foitzik S (2012) No inbreeding depression but increased sexual investment in highly inbred ant colonies. Mol Ecol 21:5613–5623CrossRefGoogle Scholar
  59. Leniaud L, Darras H, Boulay R, Aron S (2012) Social hybridogenesis in the clonal ant Cataglyphis hispanica. Curr biol 22:1188–1193CrossRefGoogle Scholar
  60. Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A et al (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour 14:1103–1113CrossRefGoogle Scholar
  61. Marsh AC (1985a) Microclimatic factors influencing foraging patterns and success of the thermophilic desert ant, Ocymyrmex barbiger. Insectes Soc 32:286–296CrossRefGoogle Scholar
  62. Marsh AC (1985b) Thermal responses and temperature tolerance in a diurnal desert ant, Ocymyrmex barbiger. Physiol Zool 58:629–636CrossRefGoogle Scholar
  63. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC bioinform 13:31CrossRefGoogle Scholar
  64. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364CrossRefGoogle Scholar
  65. McGlynn TP (2010) Polygyny in thief ants responds to competition and nest limitation but not food resources. Insectes Soc 57:23–28CrossRefGoogle Scholar
  66. Meglécz E, Pech N, Gilles A, Dubut V, Hingamp P, Trilles A et al (2014) QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. ‎Mol Ecol Resour 14:1302–1313CrossRefGoogle Scholar
  67. Molet M, Fisher BL, Ito F, Peeters C (2009) Shift from independent to dependent colony foundation and evolution of ‘multi-purpose’ ergatoid queens in Mystrium ants (subfamily Amblyoponinae). Biol J Linnean Soc 98:198–207CrossRefGoogle Scholar
  68. Monnin T, Peeters C (1999) Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav Ecol 10:323–332CrossRefGoogle Scholar
  69. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austral J Zool 53:301–311CrossRefGoogle Scholar
  70. Nonacs P (1988) Queen number in colonies of social Hymenoptera as a kin-selected adaptation. Evolution 42:566–580Google Scholar
  71. Norman V, Darras H, Tranter C, Aron S, Hughes WO (2016) Cryptic lineages hybridize for worker production in the harvester ant Messor barbarus. Biol lett 12:20160542CrossRefGoogle Scholar
  72. Oldroyd BP, Halling LA, Good G, Wattanachaiyingcharoen W, Barron AB, Nanork P et al (2001) Worker policing and worker reproduction in Apis cerana. Behav Ecol Sociobiol 50:371–377CrossRefGoogle Scholar
  73. Pamilo P (1985) Effect of inbreeding on genetic relatedness. Hereditas 103:195–200CrossRefGoogle Scholar
  74. Pamilo P (1991) Evolution of colony characteristics in social insects. II. Number of reproductive individuals. Am Nat 138:412–433CrossRefGoogle Scholar
  75. Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70:472–480CrossRefGoogle Scholar
  76. Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306:1780–1783CrossRefGoogle Scholar
  77. Peeters C (2012) Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecological News 16:75–91Google Scholar
  78. Peeters C, Tsuji K (1993) Reproductive conflict among ant workers in Diacamma sp. from Japan: dominance and oviposition in the absence of the gamergate. Insectes Soc 40:119–136CrossRefGoogle Scholar
  79. Perry JC, Roitberg BD (2006) Trophic egg laying: hypotheses and tests. Oikos 112:706–714CrossRefGoogle Scholar
  80. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  81. Ratnieks FL (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236CrossRefGoogle Scholar
  82. Ravary F, Jaisson P (2004) Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi FOREL (Formicidae, Cerapachyinae). Insectes Soc 51:67–73CrossRefGoogle Scholar
  83. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  84. Robinson EJH (2014) Polydomy: the organisation and adaptive function of complex nest systems in ants. Curr Opin Insect Sci 5:37–43CrossRefGoogle Scholar
  85. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946CrossRefGoogle Scholar
  86. Romiguier J, Fournier A, Yek SH, Keller L (2017) Convergent evolution of social hybridogenesis in Messor harvester ants. Mol Ecol 26:1108–1117CrossRefGoogle Scholar
  87. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228Google Scholar
  88. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  89. Schmidt CV, Heimbucher A, Bernadou A, Heinze J (2017) First come, first served: the first-emerging queen monopolizes reproduction in the ant Cardiocondyla “argyrotricha”. J Ethol 35:21–27CrossRefGoogle Scholar
  90. Sommer S, Wehner R (2012) Leg allometry in ants: extreme long-leggedness in thermophilic species. Arthropod Struct Dev 41:71–77CrossRefGoogle Scholar
  91. Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes soc 48:1–13CrossRefGoogle Scholar
  92. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Evol Syst 28:27–54CrossRefGoogle Scholar
  93. Van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool 3:1CrossRefGoogle Scholar
  94. Vargo EL (2003) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57:2805–2818CrossRefGoogle Scholar
  95. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513Google Scholar
  96. Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In JM Pasteels and J-L Deneubourg (ed) From Individual to Collective Behavior in Social Insects. Birkhäuser Basel, Switzerland, pp. 15–42Google Scholar
  97. Wehner R, Wehner S (2011) Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol Entomol 36:271–281CrossRefGoogle Scholar
  98. Weir BS (1996) Genetic Data Analysis II. Sinauer and Associates, SunderlandGoogle Scholar
  99. Willot Q, Simonis P, Vigneron JP, Aron S (2016) Total internal reflection accounts for the bright color of the Saharan silver ant. PloS One 11:e0152325CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.Evolutionary Biology and EcologyUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations