Advertisement

Insectes Sociaux

, Volume 66, Issue 3, pp 403–411 | Cite as

Wood excavation, construction, and architecture in two Reticulitermes subterranean termites

  • L. Berville
  • E. DarrouzetEmail author
Research Article

Abstract

Collective constructions are marvels of complexity, composed of networks of tunnels and chambers. However, it is difficult to study subterranean nests without using invasive techniques because the nests are built within pieces of wood and/or in the soil. Using computerized tomography scans and medical imaging software (OsiriX), we were able to observe nest creation, constructions, and architecture of two subterranean termite species. We monitor the nests’ growth in three dimensions built by two Reticulitermes species: R. grassei, a species native to Europe, and R. flavipes, an invasive species introduced from North America, over a several month period. Doing so, we wanted to know whether the construction of the nest could participate to the invasive success of R. flavipes. Although the two species displayed some similarities (i.e., nest creation, chamber size, and levels of wood consumption), only R. flavipes built interior structures. Some of these structures changed over time and thus might play a role in the trade-off between wood consumption, colony protection, and environmental homeostasis.

Keywords

Animal architecture Tomography Reticulitermes flavipes R. grassei Self-organized structures Social insects 

Notes

Acknowledgements

We gratefully acknowledge J. Pearce for her English revisions. We would like to thank S. Dupont for rearing the termite colonies in the laboratory and D. Herbreteau for letting us use the CT scanner at Tours Hospital.

Supplementary material

40_2019_696_MOESM1_ESM.jpg (1.7 mb)
Supplementary material 1 Supplementary Figure 1. Two-dimensional DICOM scans of Reticulitermes nests. On the top right, a colony of R. grassei termites at T0 crawling out of the wood. On the top left, a colony of R. flavipes termites (colony n°3) at T3. On the bottom left, a colony of R. flavipes termites (colony n°1) at T5. And, on the bottom left, R. flavipes colony (n°4) at T7 (JPG 1699 KB)
40_2019_696_MOESM2_ESM.jpg (1.5 mb)
Supplementary material 2 Supplementary Figure 2. Three-dimensional images of R. flavipes nest (colony n°2) after 100 days, where sand-based can be distinguished (yellow). Here, areas in which wood is present have been artificially removed to allow the chambers (white) to observed (JPG 1555 KB)
40_2019_696_MOESM3_ESM.wmv (2.2 mb)
Supplementary material 3 Supplementary Video 1. Two-dimensional DICOM scans of R. flavipes nest (colony n°4) after 202 days (WMV 2224 KB)
40_2019_696_MOESM4_ESM.wmv (1.8 mb)
Supplementary material 4 Supplementary Video 2a and 2b. Three-dimensional images of R. grassei nest (colony n°2) after 65 and 202 days (WMV 1864 KB)
40_2019_696_MOESM5_ESM.wmv (1.6 mb)
Supplementary material 5 Supplementary Video 2a and 2b (WMV 1685 KB)

References

  1. Abe T, Higashi M (1991) Cellulose centred perspective on terrestrial community structure. Oikos 60:127–133CrossRefGoogle Scholar
  2. Aber A, Fontes LR (1993) Reticulitermes lucifugus (Isoptera, Rhinotermitidae), a pest of wooden structures, is introduced into the South American Continent. Sociobiology 21:335–339Google Scholar
  3. Bagnères A-G, Clément J-L, Blum M, Severson R, Joulie C, Lange C (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244CrossRefGoogle Scholar
  4. Bagnères A-G, Killian A, Clément J-L, Lange C (1991) Interspecific recognition among Termites of the genus Reticulitermes. Evidence for a role for the cuticular hydrocarbons. J Chem Ecol 17:2397–2420CrossRefGoogle Scholar
  5. Bollazzi M, Forti LC, Roces F (2012) Ventilation of the giant nests of Atta leaf-cutting ants: does underground circulating air enter the fungus chambers? Insectes Soc 59(4):487–498CrossRefGoogle Scholar
  6. Bouillon A (1964) Structure et accroissement des nids d’Apicotermes Holmgren (Isoptere, Termitinae). 295–326 pp. In: Bouillon A (ed) Etudes sur les termites Africains. Université de Léopoldville, KinshasaGoogle Scholar
  7. Buhl J, Deneubourg JL, Grimal A, Theraulaz G (2005) Self-organized digging activity in ant colonies. Behav Ecol Sociobiol 58(1):9–17CrossRefGoogle Scholar
  8. Darrouzet E (2013) Les insectes bâtisseurs: nids de termites, de guêpes et de frelons. In: Connaissances & Savoirs (eds)Google Scholar
  9. Deneubourg JL, Franks NR (1995) Collective control without explicit coding: the case of communal nest excavation. J Insect Behav 8(4):417–432CrossRefGoogle Scholar
  10. Dronnet S, Lohou C, Christidès J-P, Bagnères A-G (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J Chem Ecol 30:1027–1042CrossRefGoogle Scholar
  11. Eom Y-H, Perna A, Fortunato S, Darrouzet E, Theraulaz G, Jost C (2015) Network based model of the growth of termite nests. Phys Res E 92(6):062810Google Scholar
  12. Evans TA, Forschler BT, Kenneth G (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474CrossRefGoogle Scholar
  13. Forschler BT (1994) Fluorescent spray paint as a topical marker on subterranean termites (Isoptera: Rhinotermitidae). Sociobiology 24:27–38Google Scholar
  14. Fuchs A, Schreyer A, Feuerbach S, Korb J (2004) A new technique for termite monitoring using computer tomography and endoscopy. Int J Pest Manag 50(1):63–66CrossRefGoogle Scholar
  15. Garner MR (1953) The preparation of latex casts of soil cavities for the study of tunneling activities of animals. Science 118(3066):380–381CrossRefGoogle Scholar
  16. Grassé PP (1984) Termitologia. Fondation des sociétés—Construction. Tome2. Masson, ParisGoogle Scholar
  17. Greco M, Bell M, Spooner-Hart R, Holford P (2006) X-ray computerized tomography as a new method for monitoring Amegilla holmesi nest structures, nesting behaviour, and adult female activity. Entomol Exp Appl 120(1):71–76CrossRefGoogle Scholar
  18. Halley JD, Burd M, Wells P (2005) Excavation and architecture of Argentine ant nests. Insectes Soc 52(4):350–356CrossRefGoogle Scholar
  19. Himmi SK, Yoshimura T, Yanase Y, Oya M, Torigoe T, Imazu S (2014) X-ray tomographic analysis of the initial structure of the royal chamber and the nest-founding behavior of the drywood termite Incisitermes minor. J Wood Sci 60(6):453–460CrossRefGoogle Scholar
  20. Himmi SK, Yoshimura T, Yanase Y, Mori T, Torigoe T, Imazu S (2016) Wood anatomical selectivity of drywood termite in the nest-gallery establishment revealed by X-ray tomography. Wood Sci Technol 50(3):631–643CrossRefGoogle Scholar
  21. Hölldobler B, Wilson EO (1990) Colony odor and kin recognition. In: The ants. Harvard University Press, Cambridge and Springer, Berlin, Heidelberg, pp 197–199Google Scholar
  22. Khuong A, Gautrais J, Perna A, Sbaï C, Combe M, Theraulaz G (2016) Stigmergic construction and topochemical information shape ant nest architecture. PNAS 113(5):201509829CrossRefGoogle Scholar
  23. King EG, Spink WT (1969) Foraging Galleries of the Formosan Subterranean Termite, Coptotermes formosanus, in Louisiana. Ann Entomol Soc Am 62(3):536–542CrossRefGoogle Scholar
  24. Korb J, Linsenmair KE (2000) Thermoregulation of termite mounds: what role does ambient temperature and metabolism of the colony play? Insectes Soc 47:357–363CrossRefGoogle Scholar
  25. Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212–219CrossRefGoogle Scholar
  26. Leniaud L, Darrouzet E, Dedeine F, Ahn K, Huang Z, Bagnères A-G (2011) Ontogenic potentialities of the worker caste in two sympatric subterranean termites in France. Evol Dev 13:138–148CrossRefGoogle Scholar
  27. Lüscher M (1955) Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop 12:289–307Google Scholar
  28. Minter NJ, Franks NR, Robson Brown KA (2012) Morphogenesis of an extended phenotype: four-dimensional ant nest architecture. J R Soc Interface 9(68):586–595CrossRefGoogle Scholar
  29. Monaenkova D, Gravish N, Rodriguez G, Kutner R, Goodisman MD, Goldman DI (2015) Behavioral and mechanical determinants of collective subsurface nest excavation. J Exp Biol 218:1295–1305.  https://doi.org/10.1242/jeb.113795 CrossRefGoogle Scholar
  30. Ohashi M, Domisch T, Finér L, Jurgensen MF, Sundström L, Kilpeläinen J, Risch AC, Niemelä P (2012) The effect of stand age on CO2 efflux from wood ant (Formica rufa group) mounds in boreal forests. Soil Biol Biochem 52:21–28CrossRefGoogle Scholar
  31. Perna A, Jost C, Couturier E, Valverde S, Douady S, Theraulaz G (2008a) The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95(9):877–884CrossRefGoogle Scholar
  32. Perna A, Valverde S, Gautrais J, Jost C, Solé R, Kuntz P, Theraulaz G (2008b) Topological efficiency in three-dimensional gallery networks of termite nests. Phys A Stat Mech Appl 387(24):6235–6244CrossRefGoogle Scholar
  33. Perdereau E, Bagnères AG, Dupont S, Dedeine F (2010) High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes sociaux 57(4):393–402CrossRefGoogle Scholar
  34. Perdereau E, Dedeine F, Christidès JP, Dupont S, Bagnères AG (2011) Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol Invasions 13(6):1457–1470CrossRefGoogle Scholar
  35. Perdereau E, Bagnères AG, Vargo EL, Baudouin G, Xu Y, Labadie P, Dupont S, Dedeine F (2015) Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 24(9):2125–2142CrossRefGoogle Scholar
  36. Rabeling C, Verhaagh M, Engels W (2007) Comparative study of nest architecture and colony structure of the fungus-growing ants, Mycocepurus goeldii and M. smithii. J Insect Sci 7(40):1–13CrossRefGoogle Scholar
  37. Risch AC, Anderson TM, Schütz M (2012) Soil CO2 emissions associated with termitaria in Tropical savanna: evidence of hot-spot compensation. Ecosystems 15:1147–1157CrossRefGoogle Scholar
  38. Rome Q, Muller FJ, Touret-Alby A, Darrouzet E, Perrard A, Villemant C (2015) Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J Appl Entomol 139(10):771–782CrossRefGoogle Scholar
  39. Rosset A, Spadola L, Ratib OJ (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. Digit Imaging 17:205CrossRefGoogle Scholar
  40. Ruelle J (1964) L’Architecture du nid de Macrotermes natalensis et son sens fonctionnel. In: Bouillon A (ed) Etudes sur les termites Africains. Université de Léopoldville, KinshasaGoogle Scholar
  41. Shellman-Reeve JS (1994) Limited nutrients in a dampwood termite: nest preference, competition and cooperative nest defence. J Anim Ecol 63:921–932CrossRefGoogle Scholar
  42. Spragg WT, Paton R (1980) Tracing, trophallaxis and population measurement of colonies of subterranean termites (Isoptera) using a radioactive tracer. Ann Entomol Soc Am 73(6):708–714CrossRefGoogle Scholar
  43. Su NY, Ye WM, Ripa R, Scheffrahn RH, Giblin-Davis RM (2006) Identification of Chilean Reticulitermes (Isoptera: Rhinotermitidae) inferred from three mitochondrial gene DNA sequences and soldier morphology. Ann Entomol Soc Am 99(2):352–363CrossRefGoogle Scholar
  44. Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe Takuya BD, Higashi E Masahiko, (eds) Termites: evolution, sociality, symbioses, ecology. Springer Netherlands, Kluwer Academic Publishers, Dordrecht, pp 141–168CrossRefGoogle Scholar
  45. Tschinkel WR (1999) Sociometry and sociogenesis of colony-level attributes of the Florida harvester ant (Hymenoptera: Formicidae). Ann Entomol Soc Am 92(1):80–89CrossRefGoogle Scholar
  46. Tschinkel WR (2010) Methods for casting subterranean ant nests. J Insect Sci 10(1):88.  https://doi.org/10.1673/031.010.8801 Google Scholar
  47. Tschinkel WR (2011) Back to basics: sociometry and sociogenesis of ant societies (Hymenoptera: Formicidae). Myrmecol News 14:49–54Google Scholar
  48. Turner JS (2001) On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Phys Biochem Zool 74(6):798–822CrossRefGoogle Scholar
  49. Wenzel JW (1990) Nest design and secondary functions of social insect architecture. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Oxford & IBH Publ. Co., New Delhi, pp 657–658Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2019

Authors and Affiliations

  1. 1.IRBI, UMR CNRS 7261, University of ToursToursFrance

Personalised recommendations