Advertisement

Insectes Sociaux

, Volume 66, Issue 1, pp 73–80 | Cite as

An improved approach for the collective construction of architectures inspired by wasp nests

  • M. RahmaniEmail author
  • A. Lehireche
  • R. M. Hamou
Research Article

Abstract

We present in this article, a new decentralized algorithmic approach for the automatic construction of three-dimensional structure based on simple behavioral rules. This model is an improvement of the model introduced by Eric Bonabeau and Guy Theraulaz to simulate the process of building wasps’ nest. To speed up the construction process, and to prevent the builder swarm from moving far away from regions with stimuli to build, we constructed a dynamic envelope that limits agents’ movements to remain close to the built structure. The envelope adjusts both as the structure develops and as agents assess whether individual sites should be built in, or not. The use of such an envelope results in faster construction and gives an explicit method for terminating a simulation when no buildable sites remain, thus indicating that a structure has converged to its final form.

Keywords

Collective intelligence Insect societies Qualitative stigmergy Self-assembly 

Notes

Acknowledgements

We are very grateful to our Associate Editor, Miriam Richards, and the two anonymous reviewers for their constructive feedback and guidance. Their critical review has greatly improved the final version of this article.

Supplementary material

40_2018_671_MOESM1_ESM.mp4 (1.4 mb)
Supplementary material 1 (MP4 1476 KB)
40_2018_671_MOESM2_ESM.mp4 (5.9 mb)
Supplementary material 2 (MP4 6019 KB)
40_2018_671_MOESM3_ESM.mp4 (744 kb)
Supplementary material 3 (MP4 743 KB)
40_2018_671_MOESM4_ESM.mp4 (7.2 mb)
Supplementary material 4 (MP4 7348 KB)
40_2018_671_MOESM5_ESM.mp4 (4.4 mb)
Supplementary material 5 (MP4 4467 KB)
40_2018_671_MOESM6_ESM.mp4 (1 mb)
Supplementary material 6 (MP4 1043 KB)
40_2018_671_MOESM7_ESM.mp4 (14.1 mb)
Supplementary material 7 (MP4 14458 KB)
40_2018_671_MOESM8_ESM.mp4 (2.1 mb)
Supplementary material 8 (MP4 2115 KB)

References

  1. Adam JG (2006) Designing emergence: automatic extraction of stigmergic algorithms from lattice structures. Ph.D. Dissertation, Essex UniversityGoogle Scholar
  2. Allwright M (2017) An autonomous multi-robot system for stigmergy-based construction. Ph.D. dissertation, Paderborn UniversityGoogle Scholar
  3. Anderson C, Theraulaz G, Deneubourg JL (2002) Self-Assemblages in Insect Societies. Insectes Soc 49(2):99–110CrossRefGoogle Scholar
  4. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford university press, New YorkGoogle Scholar
  5. Bonabeau E, Guérin S, Snyers D, Kuntz P, Theraulaz G (2000) Three-dimensional architectures grown by simple ‘stigmergic’ agents. BioSystems 56(1):13–32CrossRefPubMedGoogle Scholar
  6. Bonabeau E, Theraulaz G (1997a) Auto-organisation et comportements collectifs: la modélisation des sociétés d’insectes. In: Theraulaz G, Splitz F (eds) Auto-organisation et comportement. Hermes, Paris, pp 91–140Google Scholar
  7. Bonabeau E, Theraulaz G (1997b) La modélisation du comportement bâtisseur des insectes sociaux. In: Theraulaz G, Splitz F (eds) Auto-organisation et comportement. Hermes, Paris, pp 209–234Google Scholar
  8. Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, CambridgeCrossRefGoogle Scholar
  9. Downing HA, Jeanne RL (1988) Nest construction by the paper wasp, Polistes: a test of stigmergy theory. Anim Behav 36(6):1729–1739CrossRefGoogle Scholar
  10. Garnier S, Gautrais J, Theraulaz G (2007) The biological principles of swarm intelligence. Swarm Intell 1(1):3–31CrossRefGoogle Scholar
  11. Grassé PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc 6(1):41–80CrossRefGoogle Scholar
  12. Hamou RM, Amine A, Rahmani M (2012) A new biomimetic approach based on social spiders for clustering of text. In: Lee R (ed) Software engineering research, management and appl, vol 430. Springer, Heidelberg, pp 17–30Google Scholar
  13. Heylighen F (2016a) Stigmergy as a universal coordination mechanism I: Definition and components, Cognitive Systems Research, vol 38. Elsevier, Amsterdam, pp 4–13Google Scholar
  14. Heylighen F (2016b) Stigmergy as a universal coordination mechanism II: varieties and evolution, cognitive systems research, vol 38. Elsevier, Amsterdam, pp 50–59Google Scholar
  15. Karsai I (1999) Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif Life 5(2):117–136CrossRefPubMedGoogle Scholar
  16. Karsai I, Balazsi G (2002) Organization of work via a natural substance: regulation of nest construction in social wasps. J Theor Biol 218(4):549–565CrossRefPubMedGoogle Scholar
  17. Karsai I, Pénzes Z (1993) Comb building in social wasps: self-organization and stigmergic script. J Theor Biol 161(4):505–525CrossRefGoogle Scholar
  18. Korb J (2011) Termite mound architecture, from function to construction. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 349–374Google Scholar
  19. Monmarché N (2000) Algorithmes de fourmis artificielles: applications à la classification et à l’optimisation. Ph.D. dissertation, Université François Rabelais,ToursGoogle Scholar
  20. Pilat ML (2006) Wasp-inspired construction algorithms. Technical Report TN 2006-847-40, Department of Computer Science, University of Calgary. https://prism.ucalgary.ca/bitstream/handle/1880/46477/2006-847-40.pdf?sequence=%26amp;isAllowed=y
  21. Sendova-Franks AB, Franks NR (1999) Self-assembly, self-organization and division of labour. Philos Trans R Soc B Biol Sci 354(1388):1395–1405CrossRefGoogle Scholar
  22. Sharan K (2015) Learn JavaFX 8: building user experience and interfaces with Java 8. Apress, BerkeleyCrossRefGoogle Scholar
  23. Spell TB (2015) Pro Java 8 programming. Apress, BerkeleyCrossRefGoogle Scholar
  24. Theraulaz G, Bonabeau E (1995a) Coordination in distributed building. Science 269(5224):686–688CrossRefPubMedGoogle Scholar
  25. Theraulaz G, Bonabeau E (1995b) Modelling the collective building of complex architectures in social insects with lattice swarms. J Theor Biol 177(4):381–400CrossRefGoogle Scholar
  26. Theraulaz G, Bonabeau E (1999) A brief history of stigmergy. Artif Life 5(2):97–116CrossRefPubMedGoogle Scholar
  27. Theraulaz G, Bonabeau E, Deneubourg JL (1999) The mechanisms and rules of coordinated building in social insects. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhäuser, Basel, pp 309–330CrossRefGoogle Scholar
  28. Wenzel JW (1991) Evolution of nest architecture. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, pp 480–519Google Scholar
  29. Werfel J (2012) Collective construction with robot swarms. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering. Springer, Heidelberg, pp 115–140CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.GeCoDe Laboratory, Department of Computer ScienceTahar Moulay UniversitySaidaAlgeria
  2. 2.EEDIS Laboratory, Department of Computer ScienceDjillali Liabes UniversitySidi Bel AbbesAlgeria

Personalised recommendations