Applications of RFID technology on the study of bees

  • P. Nunes-Silva
  • M. Hrncir
  • J. T. F. Guimarães
  • H. Arruda
  • L. Costa
  • G. Pessin
  • J. O. Siqueira
  • P. de Souza
  • V. L. Imperatriz-Fonseca
Review Article


Bees have the potential to be used as indicators of environmental quality. The parameters typically analyzed in this context include species diversity, colony condition and foraging behavior. Bees explore the area around their nests, whose size and location vary based on the flight ranges and nesting preferences of the respective species. The environment around the nest must contain appropriate resources, which are collected by bees during foraging. Therefore, the internal nest environment is connected to the external environment via foraging. Until early 2000, direct observations and/or video recording of the foraging activity of social bees were the predominant techniques for studying foraging behavior, and paint marks or labels were used to distinguish individuals. Although these techniques are still used, radio-frequency identification (RFID) technology has been used for bee monitoring and can automatically count the inbound and outbound movements of bees from the nest and perform individual recognition. Here, we review the applications of RFID technology in bee research and discuss the advantages and disadvantages of RFID compared with those of other techniques.


Monitoring Foraging Behavior Tracking data Social insects 



The authors thank “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for scholarship grants (PNS: 380430/2017-7), Vale Institute of Technology (ITV) for institutional support, and two anonymous reviewers for the suggestions that improved this manuscript.


  1. Benaets K, Van Geystelen A, Cardoen D, De Smet L, de Graaf DC, Schoofs L, Larmuseau MHD, Brettell LE, Martin SJ, Wenseleers T (2017) Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc R Soc B Biol Sci 284:20162149. CrossRefGoogle Scholar
  2. Beyaert L, Greggers U, Menzel R (2012) Honeybees consolidate navigation memory during sleep. J Exp Biol 215:3981–3988. CrossRefPubMedGoogle Scholar
  3. Biesmeijer JC, Ermers MCW (1999) Social foraging in stingless bees: how colonies of Melipona fasciata choose among nectar sources. Behav Ecol Sociobiol 46:129–140. CrossRefGoogle Scholar
  4. Biesmeijer JC, Tóth E (1998) Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica. Insectes Soc 45:427–443. CrossRefGoogle Scholar
  5. Biesmeijer JC, Van Nieuwstadt MGL, Lukács S, Sommeijer MJ (1998) The role of internal and external information in foraging decisions of Melipona workers (Hymenoptera: Meliponinae). Behav Ecol Sociobiol 42:107–116. CrossRefGoogle Scholar
  6. Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540. CrossRefPubMedGoogle Scholar
  7. Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564. CrossRefGoogle Scholar
  8. Chang L-H, Barron AB, Cheng K (2015) Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera). J Exp Biol 218:1715–1724. CrossRefPubMedGoogle Scholar
  9. Chittka L, Stelzer RJ, Stanewsky R (2013) Daily changes in ultraviolet light levels can synchronize the circadian clock of bumblebees (Bombus terrestris). Chronobiol Int 30:434–442. CrossRefPubMedGoogle Scholar
  10. Crall JD, Chang JJ, Oppenheimer RL, Combes SA (2016) Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence. Interface Focus 7:20160086–20160089. CrossRefGoogle Scholar
  11. Crane E (1984) Honeybees. In: Mason IL (ed) Evolution of domesticated animals. Longman Group, London, pp 403–415Google Scholar
  12. Darney K, Giraudin A, Joseph R, Abadie P, Aupinel P, Decourtye A, Le Bourg E, Gauthier M (2016) Effect of high-frequency radiations on survival of the honeybee (Apis mellifera L.). Apidologie 47:703–710. CrossRefGoogle Scholar
  13. Decourtye A, Devillers J, Aupinel P, Brun F, Bagnis C, Fourrier J, Gauthier M (2011) Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20:429–437. CrossRefPubMedGoogle Scholar
  14. Dornhaus A, Chittka L (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav Ecol Sociobiol 50:570–576. CrossRefGoogle Scholar
  15. Dosselli R, Grassl J, Carson A, Simmons L, Baer B (2016) Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis. Sci Rep 6:36649. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S, Kretzchmar A, Le Conte Y (2013) Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invertebr Pathol 113:42–51. CrossRefPubMedGoogle Scholar
  17. Engelke U, Hutson H, Nguyen H, Souza P (2016) MelissAR: towards augmented visual analytics of honey bee behaviour. Proc 2016 CHI Conf Ext Abstr Hum Factors Comput Syst 2057–2063.
  18. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620. CrossRefPubMedGoogle Scholar
  19. Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–323. CrossRefPubMedGoogle Scholar
  20. Fischer J, Müller T, Spatz A, Greggers U, Grünewald B, Menzel R (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 9:e91364. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gama F, Arruda HM, Carvalho HV, Souza P, Pessin G (2017) Improving our understanding of the behavior of bees through anomaly detection techniques. In: Lintas A, Rovetta S, Verschure P, Villa A (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017, vol 10614. Springer, Cham. Lecture Notes in Computer ScienceCrossRefGoogle Scholar
  22. Gill RJ, Raine NE (2014) Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol 28:1459–1471. CrossRefGoogle Scholar
  23. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gomes PAB, de Carvalho EC, Arruda HM, Souza P, Pessin G (2017) Exploiting recurrent neural networks in the forecasting of bees’ level of activity. In: Lintas A, Rovetta S, Verschure PFMJ, Villa AEP (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017, vol 10613. Springer, Cham. Lecture Notes in Computer ScienceCrossRefGoogle Scholar
  25. Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B Biol Sci 282:20151371. CrossRefGoogle Scholar
  26. He X, Wang W, Qin Q et al (2013) Assessment of flight activity and homing ability in Asian and European honey bee species, Apis cerana and Apis mellifera, measured with radio frequency tags. Apidologie 44:38–51. CrossRefGoogle Scholar
  27. Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 337:1453–1453. CrossRefGoogle Scholar
  28. Hilário SD, Imperatriz-Fonseca VL, Kleinert AMP (2000) Flight activity and colony strength in the stingless bee Melipona bicolor bicolor (Apidae, Meliponinae). Rev Bras Biol 60:299–306. CrossRefPubMedGoogle Scholar
  29. Hilario SD, Imperatriz-Fonseca VL, Kleinert AMP (2001) Responses to climatic factors by foragers of Plebeia pugnax Moure (In litt.) (Apidae, Meliponinae). Brazilian J Biol 61:191–196. CrossRefGoogle Scholar
  30. Hirsch P, Weily AR, Souza P (2015) Compact dual-band parasitic dipole antenna for harmonic transponders. In: 2015 International Symposium on Antennas and Propagation (ISAP), pp 722–724Google Scholar
  31. Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG (2003) Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insectes Soc 50:365–374. CrossRefGoogle Scholar
  32. Katzenberger TD, Lunau K, Junker RR (2013) Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Behav Ecol Sociobiol 67:1587–1599. CrossRefGoogle Scholar
  33. Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530. CrossRefGoogle Scholar
  34. Kühnholz S, Seeley TD (1997) The control of water collection in honey bee colonies. Behav Ecol Sociobiol 41:407–422. CrossRefGoogle Scholar
  35. Lach L, Kratz M, Baer B (2015) Parasitized honey bees are less likely to forage and carry less pollen. J Invertebr Pathol 130:64–71. CrossRefPubMedGoogle Scholar
  36. Leonhardt SD, Kaluza BF, Wallace H, Heard TA (2016) Resources or landmarks: which factors drive homing success in Tetragonula carbonaria foraging in natural and disturbed landscapes? J Comp Physiol A 202:701–708. CrossRefGoogle Scholar
  37. Li Z, Chen Y, Zhang S, Chen S, Li W, Yan L, Shi L, Wu L, Sohr A, Su S (2013) Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS One 8:e77354. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li Z, Su S, Hamilton M, Yan L, Chen Y (2014) The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses. J Invertebr Pathol 120:18–22. CrossRefPubMedGoogle Scholar
  39. Lieshout M, Grossi L, Spinelli G, Helmus S, Kool L, Pennings L, Stap R, Veugen T, Waaij B, Borean C (2007) RFID Technologies: Emerging issues, challenges and policy options. JRC Scientific and Technical Reports (p. 278). Retrieved from Accessed 20 Mar 2018
  40. Maia-Silva C, Hrncir M, da Silva CI, Imperatriz-Fonseca VL (2015) Survival strategies of stingless bees (Melipona subnitida) in an unpredictable environment, the Brazilian tropical dry forest. Apidologie 46:631–643. CrossRefGoogle Scholar
  41. Maia-Silva C, Imperatriz-Fonseca VL, Silva CI, Hrncir M (2014) Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology 61:378–385. CrossRefGoogle Scholar
  42. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos Soc 73:S000632319700515X. CrossRefGoogle Scholar
  43. Meikle WG, Holst N (2015) Application of continuous monitoring of honeybee colonies. Apidologie 46:10–22. CrossRefGoogle Scholar
  44. Meléndez V, Ayala R, Délfin H (2014) Abejas como bioindicadores de perturbaciones en los ecosistemas y el ambiente. In: (INECC) IN de E y CC (ed) Bioindicadores: Guardianes de nuestro futuro. El Colegio de la Frontera Sur (ECOSUR), Instituto Nacional de Ecología y Cambio Climático (INECC), pp 347–369Google Scholar
  45. Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc B Biol Sci 267:961–968. CrossRefGoogle Scholar
  46. Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  47. Molet M, Chittka L, Stelzer RJ, Streit S, Raine NE (2008) Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 62:1919–1926. CrossRefGoogle Scholar
  48. Moroń D, Grześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts S, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of heavy metal pollution. J Appl Ecol 49:118–125. CrossRefGoogle Scholar
  49. Nachev V, Thomson JD, Winter Y (2013) The psychophysics of sugar concentration discrimination and contrast evaluation in bumblebees. Anim Cogn 16:417–42. CrossRefPubMedGoogle Scholar
  50. Nunes-Silva P, Hilário SD, Santos Filho PS, Imperatriz-Fonseca VLVL (2010) Foraging activity in Plebeia remota, a stingless bees species, is influenced by the reproductive state of a colony. Psyche CrossRefGoogle Scholar
  51. Ohashi K, D’Souza D, Thomson JD (2010) An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behav Ecol Sociobiol 64:891–897. CrossRefGoogle Scholar
  52. Ohashi K, Leslie A, Thomson JD (2008) Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behav Ecol 19:936–948. CrossRefGoogle Scholar
  53. Ohashi K, Leslie A, Thomson JD (2013) Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal. Behav Ecol 24:768–778. CrossRefGoogle Scholar
  54. Ohashi K, Thomson JD (2009) Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann Bot 103:1365–1378. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Oliveira-Abreu C, Hilário SD, Luz CFP, Alves-Dos-Santos I (2014) Pollen and nectar foraging by Melipona quadrifasciata anthidioides Lepeletier (Hymenoptera: Apidae: Meliponini) in natural habitat. Sociobiology 61:441–448. CrossRefGoogle Scholar
  56. Ong A, Souza P (2014) An electromagnetic device. Australian Provisional Patent Application No: 2014902621 (filed on 7/7/2014). Patent Cooperation Treaty: PCT/AU2015/050175 (filed on 7 July 2015). Patent Number: WO2016004476-A1
  57. Orbán LL, Plowright CMS (2013) The effect of flower-like and non-flower-like visual properties on choice of unrewarding patterns by bumblebees. Naturwissenschaften 100:621–631. CrossRefPubMedGoogle Scholar
  58. Orbán LL, Plowright CMS (2014) Radio frequency identification and motion-sensitive video efficiently automate recording of unrewarded choice behavior by bumblebees. J Vis Exp 3791:1–12. CrossRefGoogle Scholar
  59. Osborne AJL, Clark SJ, Morris RJ, Williams I, Riley J, Smith A, Reynolds D, Edwards A (1999) A landscape-scale of bumble bee foraging study range and constancy using harmonic radar. J Appl Ecol 36:519–533. CrossRefGoogle Scholar
  60. Osborne JL, Martin AP, Carreck NL, Swain J, Knight M, Goulson D, Hale R, Sanderson R (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:406–415. CrossRefPubMedGoogle Scholar
  61. Perry CJ, Søvik E, Myerscough MR, Barron AB (2015) Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Natl Acad Sci 112:3427–3432. CrossRefPubMedGoogle Scholar
  62. Pham-Delègue M-H, Decourtye A, Kaiser L, Devillers J (2002) Behavioural methods to assess the effects of pesticides on honey bees. Apidologie 33:425–432. CrossRefGoogle Scholar
  63. Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble-bees. Proc R Soc B Biol Sci 275:803–808. CrossRefGoogle Scholar
  64. Reynolds AM, Smith AD, Menzel R, Greggers U, Reynolds D, Riley J (2007) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961. CrossRefPubMedGoogle Scholar
  65. Riley JR, Greggers U, Smith AD, Stach S, Reynolds D, Stollhoff N, Brandt R, Schaupp F, Menzel R (2003) The automatic pilot of honeybees. Proc R Soc B Biol Sci 270:2421–2424. CrossRefGoogle Scholar
  66. Riley JR, Smith AD (2002) Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput Electron Agric 35:151–169. CrossRefGoogle Scholar
  67. Riley JR, Smith AD, Reynolds DR, Edwards A, Osborne J, Williams I, Carreck N, Poppy G (1996) Tracking bees with harmonic radar. Nature 379:29–30. CrossRefGoogle Scholar
  68. Robinson EJH, Feinerman O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659. CrossRefPubMedGoogle Scholar
  69. Robinson EJH, Richardson TO, Sendova-Franks AB, Feinerman O, Franks N (2009) Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behav Ecol Sociobiol 63:627–636. CrossRefGoogle Scholar
  70. Salkova D, Panayotova-Pencheva M (2016) Honey bees and their products as indicators of environmental pollution: A review. Agric Sci Technol 8:175–182. CrossRefGoogle Scholar
  71. Scheiner R, Abramson CI, Brodschneider R, Crailsheim K, Farina W, Fuchs S, Grünewald B, Hahshold S, Karrer M, Koeniger G, Koeniger N, Menzel R, Mujagic S, Radspieler G, Schmickl T, Schneider C, Siegel A, Szopek M, Thenius R (2013) Standard methods for behavioural studies of Apis mellifera. J Apic Res 52:1–58. CrossRefGoogle Scholar
  72. Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7:1–9. CrossRefGoogle Scholar
  73. Seeley T, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28:277–290. CrossRefGoogle Scholar
  74. Souza P, Marendy P, Barbosa K, Budi S, Hirsch P, Nikolic N, Gunthorpe T, Pessin G, Davie A (2018) Low-cost electronic tagging system for bee monitoring. Sensors 18:2124. CrossRefGoogle Scholar
  75. Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine N (2016) Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J Appl Ecol 53:1440–1449. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stelzer RJ, Chittka L (2010) Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. BMC Biol 8:93. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stelzer RJ, Chittka L, Carlton M, Ings TC (2010) Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS One 5:e9559. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Streit S, Bock F, Pirk CWW, Tautz J (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106:169–171. CrossRefPubMedGoogle Scholar
  79. Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-Tagging Technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145. CrossRefPubMedGoogle Scholar
  80. Susanto F, Gillard T, Souza P, Vincent B, Budi S, Almeida A, Pessin G, Arruda H, Williams RN, Engelke U, Marendy P, Hirsch P, He J (2018) Addressing RFID misreadings to better infer bee hive activity. IEEE 6:2169–3536. Google Scholar
  81. Switzer CM, Combes SA (2016) Bombus impatiens (Hymenoptera: Apidae) display reduced pollen foraging behavior when marked with bee tags vs. paint. J Melittol 62:1–13CrossRefGoogle Scholar
  82. Tenczar P, Lutz CC, Rao VD, Goldenfeld N, Robinson G (2014) Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim Behav 95:41–48. CrossRefGoogle Scholar
  83. Thompson H, Coulson M, Ruddle N, Wilkins S, Harkin S (2016) Thiamethoxam: assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology. Environ Toxicol Chem 35:385–393. CrossRefPubMedGoogle Scholar
  84. Thomson D (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458–470. CrossRefGoogle Scholar
  85. Thomson DM (2006) Detecting the effects of introduced species: a case study of competition between Apis and Bombus. Oikos 114:407–418. CrossRefGoogle Scholar
  86. Thomson JD, Peterson SC, Harder LD (1987) Response of traplining bumble bees to competition experiments: shifts in feeding location and efficiency. Oecologia 71:295–300. CrossRefPubMedGoogle Scholar
  87. Van Geystelen A, Benaets K, de Graaf DC, Larmuseau M, Wenseleers T (2016) Track-a-Forager: a program for the automated analysis of RFID tracking data to reconstruct foraging behaviour. Insectes Soc 63:175–183. CrossRefGoogle Scholar
  88. Van Oystaeyen A, Araujo Alves D, Caliari Oliveira R, Lima do Nascimento D, Santos do Nascimento F, Billen J, Wenseleers T (2013) Sneaky queens in Melipona bees selectively detect and infiltrate queenless colonies. Anim Behav 86:603–609. CrossRefGoogle Scholar
  89. Veder JP, Bhatt A, Hollenkamp T, Horne M, Huynh T, Knight C, Liovic P, Ong AO, Rodopoulos T, Ruether T, Souza P (2017) A step closer to 3D-Microbatteries for sensors: integrating polymer electrolytes. In: RACI National Centenary Conference 2017, p 8Google Scholar
  90. Vollet-Neto A, Menezes C, Imperatriz-Fonseca VL (2015) Behavioural and developmental responses of a stingless bee (Scaptotrigona depilis) to nest overheating. Apidologie 46:455–464. CrossRefGoogle Scholar
  91. Von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  92. Williams P, Thorp RW, Richardson L, Colla S (2014) Bumble bees of North America: an identification guide. Princeton University Press, PrincetonGoogle Scholar
  93. Winfree R, Aguilar R, Vázquez DP, Lebuhn G, Aizen M (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. CrossRefPubMedGoogle Scholar
  94. Woodgate JL, Makinson JC, Lim KS, Reynolds A, Chittka L (2016) Life-long radar tracking of bumblebees. PLoS One 11:1–22. CrossRefGoogle Scholar
  95. Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681. CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Departamento de BiociênciasUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  3. 3.Instituto Tecnológico Vale, Desenvolvimento SustentávelBelémBrazil
  4. 4.Instituto Tecnológico Vale – MineraçãoOuro PretoBrazil
  5. 5.Data61|CSIROSandy BayAustralia

Personalised recommendations