Insectes Sociaux

, Volume 65, Issue 4, pp 521–536 | Cite as

How do animals find their way back home? A brief overview of homing behavior with special reference to social Hymenoptera

  • S. Mandal
Review Article


Performing efficient homing, i.e., returning to a previously known place, is crucial for the survival of any motile animal. Animals perform homing across different spatial scales and environments, employing various mechanisms with the aid of different sensorimotor systems molded by their varied evolutionary histories and ecological constraints. Despite these differences, most of the homing mechanisms across different taxa can be explained by some general basic mechanisms. Studies from social hymenopterans contribute substantially to the knowledge base of this study field and are, especially, interesting—they show excellent homing capabilities while possessing relatively simple neural architectures, and hence, their homing mechanisms are considered as economic solutions to a complex problem. Moreover, many of their homing mechanisms have also been observed in other taxa including vertebrates. With the advent of new technologies and increased research, our understanding of the hymenopteran homing is improving faster than ever—and therefore, a regular contemporary update might be of much help. In this review, I present a brief synthesis of previous and current understanding of homing mechanisms in social hymenopterans, with descriptions of the cues that they exploit for homing, and a comparative discussion on terminologies frequently used in social Hymenoptera with analogous terminologies used to describe similar phenomena in other taxa. I conclude with a note on the potential of applying the knowledge from homing studies in other fields of research like neurobiology and robotics, and possible future directions.


Animal homing Spatial orientation Navigation Social Hymenoptera Homing cues Homing mechanisms 



I thank Raghavendra Gadagkar, Ken Cheng, and Thomas S. Collett for their helpful comments on the earlier drafts of this review, and Anindita Brahma and Imroze Khan for commenting on the readablity of the initial draft. I thank two anonymous reviewers for their much helpful comments on the initially submitted manuscript. I thank Indian Institute of Science and Raghavendra Gadagkar for providing facilities and funds for my research.


  1. Able KP (2001) The concepts and terminology of bird navigation. J Avian Biol 32:174–183. CrossRefGoogle Scholar
  2. Anderson AM (1977) A model for landmark learning in the honey-bee. J Comp Physiol A 114:335–355. CrossRefGoogle Scholar
  3. Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191:129–138. CrossRefPubMedGoogle Scholar
  4. Balbuena MS, Arenas A, Farina WM (2012) Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim Behav 84:77–83. CrossRefGoogle Scholar
  5. Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109:835–846. CrossRefGoogle Scholar
  6. Bell WJ (1990) Searching behaviour: the behavioural ecology of finding resources, 1st edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  7. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63. CrossRefPubMedGoogle Scholar
  8. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefGoogle Scholar
  9. Buehlmann C, Graham P, Hansson BS, Knaden M (2015) Desert ants use olfactory scenes for navigation. Anim Behav 106:99–105. CrossRefGoogle Scholar
  10. Buehlmann C, Hansson BS, Knaden M (2012) Desert ants learn vibration and magnetic landmarks. PLoS One 7:e33117. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buehlmann C, Woodgate JL, Collett TS (2016) On the encoding of panoramic visual scenes in navigating wood ants. Curr Biol 26:2022–2027. CrossRefPubMedGoogle Scholar
  12. Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853. CrossRefPubMedGoogle Scholar
  13. Capaldi EA, Robinson GE, Fahrbach SE (1999) Neuroethology of spatial learning: the birds and the bees. Annu Rev Psychol 50:651–682. CrossRefPubMedGoogle Scholar
  14. Capaldi EA, Smith a D, Osborne JL et al (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540. CrossRefPubMedGoogle Scholar
  15. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866. CrossRefPubMedGoogle Scholar
  16. Carlile MJ (1980) Positioning mechanisms—the role of motility, taxis and tropism in the life of microorganisms. In: Ellwood DC, N HJ, Latham MJ et al (eds) Contemporary microbial ecology. Academic, New York, pp 55–74Google Scholar
  17. Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol A 151:521–543CrossRefGoogle Scholar
  18. Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564. CrossRefGoogle Scholar
  19. Cheeseman JF, Millar CD, Greggers U et al (2014a) Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci 111:8949–8954. CrossRefPubMedGoogle Scholar
  20. Cheeseman JF, Millar CD, Greggers U et al (2014b) Reply to Cheung et al. The cognitive map hypothesis remains the best interpretation of the data in honeybee navigation. Proc Natl Acad Sci 111:E4398–E4398. CrossRefPubMedGoogle Scholar
  21. Cheng K (1995) Landmark-based spatial memory in the pigeon. In: Medin DL (ed) The psychology of learning and motivation, vol 33. Academic, San Diego, pp 1–21Google Scholar
  22. Cheng K (2012) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Wasserman EA, Zentall TR (eds) The Oxford handbook of comparative cognition, 2nd edn. Oxford University Press, New York, pp 347–365Google Scholar
  23. Cheng K (2000) How honeybees find a place: lessons from a simple mind. Anim Learn Behav 28:1–15CrossRefGoogle Scholar
  24. Cheng K, Collett TS, Wehner R (1986) Honeybees learn the colours of landmarks. J Comp Physiol A 159:69–73. CrossRefGoogle Scholar
  25. Cheung A (2014) Animal path integration: a model of positional uncertainty along tortuous paths. J Theor Biol 341:17–33. CrossRefPubMedGoogle Scholar
  26. Cheung A, Collett M, Collett TS et al (2014) Still no convincing evidence for cognitive map use by honeybees. Proc Natl Acad Sci 111:E4396–E4397. CrossRefPubMedGoogle Scholar
  27. Cheung A, Zhang S, Stricker C, Srinivasan MV (2008) Animal navigation: general properties of directed walks. Biol Cybern 99:197–217. CrossRefGoogle Scholar
  28. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932. CrossRefPubMedGoogle Scholar
  29. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800. CrossRefPubMedGoogle Scholar
  30. Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83:245–259CrossRefGoogle Scholar
  31. Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272CrossRefGoogle Scholar
  32. Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034CrossRefGoogle Scholar
  33. Collett M, Harland D, Collett TS (2002) The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. J Exp Biol 205:807–814PubMedGoogle Scholar
  34. Collett TS (1996) Insect navigation en route to the goal: multiple strategies for the use of landmarks. J Exp Biol 199:227–235CrossRefGoogle Scholar
  35. Collett TS (1988) How ladybirds approach nearby stalks: a study of visual selectivity and attention. J Comp Physiol A 163:355–363CrossRefGoogle Scholar
  36. Collett TS, Baron J (1994) Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368:137–140CrossRefGoogle Scholar
  37. Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552. CrossRefPubMedGoogle Scholar
  38. Collett TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14:R475–R477. CrossRefPubMedGoogle Scholar
  39. Collett TS, Graham P (2015) Insect navigation: do honeybees learn to follow highways? Curr Biol 25:R240–R242. CrossRefPubMedGoogle Scholar
  40. Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84. CrossRefGoogle Scholar
  41. Collett TS, Lehrer M (1993) Looking and learning: a spatial pattern in the orientation flight of the wasp Vespula vulgaris. Proc R Soc B Biol Sci 252:129–134. CrossRefGoogle Scholar
  42. Collett TS, Wystrach A, Graham P (2016) Insect orientation: the travails of going straight. Curr Biol 26:R461–R463. CrossRefPubMedGoogle Scholar
  43. Collett TS, Zeil J (1996) Flights of learning. Curr Dir Psychol Sci 5:149–155CrossRefGoogle Scholar
  44. Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, PrincetonGoogle Scholar
  45. Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol 7:e1002009. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dacke M, Baird E, Byrne M et al (2013) Dung beetles use the milky way for orientation. Curr Biol 23:298–300. CrossRefPubMedGoogle Scholar
  47. Degen J, Kirbach A, Reiter L et al (2015) Exploratory behaviour of honeybees during orientation flights. Anim Behav 102:45–57. CrossRefGoogle Scholar
  48. Dreyer D, Frost B, Mouritsen H et al (2018) The earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong moth. Curr Biol. CrossRefPubMedGoogle Scholar
  49. el Jundi B, Foster JJJ, Khaldy L et al (2016) A snapshot-based mechanism for celestial orientation. Curr Biol 26:1456–1462. CrossRefPubMedGoogle Scholar
  50. el Jundi B, Warrant EJ, Byrne MJ et al (2015) Neural coding underlying the cue preference for celestial orientation. Proc Natl Acad Sci USA 112:11395–11400. CrossRefPubMedGoogle Scholar
  51. Ernst R, Heisenberg M (1999) The memory template in Drosophila pattern vision at the flight simulator. Vision Res 39:3920–3933. CrossRefPubMedGoogle Scholar
  52. Esch HE, Burns JE (1996) Distance estimation by foraging honeybees. J Exp Biol 199:155–162PubMedGoogle Scholar
  53. Fagan WF, Lewis MA, Auger-Méthé M et al (2013) Spatial memory and animal movement. Ecol Lett 16:1316–1329. CrossRefGoogle Scholar
  54. Fleischmann PN, Christian M, Müller VL et al (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol. CrossRefPubMedGoogle Scholar
  55. Fleischmann PN, Grob R, Müller VL et al (2018) The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr Biol. CrossRefPubMedGoogle Scholar
  56. Fleischmann PN, Grob R, Wehner R, Rössler W (2017) Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants. J Exp Biol 220:2426–2435. CrossRefPubMedGoogle Scholar
  57. Foo P, Warren WH, Duchon A, Tarr MJ (2005) Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J Exp Psychol Learn Mem Cogn 31:195–215. CrossRefPubMedGoogle Scholar
  58. Freake MJ (2001) Homing behaviour in the sleepy lizard (Tiliqua rugosa): the role of visual cues and the parietal eye. Behav Ecol Sociobiol 50:563–569. CrossRefGoogle Scholar
  59. Freas CA, Cheng K (2017) Learning and time-dependent cue choice in the desert ant, Melophorus bagoti. Ethology 123:503–515. CrossRefGoogle Scholar
  60. Frier H, Edwards E, Smith C et al (1996) Magnetic compass cues and visual pattern learning in honeybees. J Exp Biol 199:1353–1361PubMedGoogle Scholar
  61. Fukushi T, Wehner R (2004) Navigation in wood ants Formica japonica: context dependent use of landmarks. J Exp Biol 207:3431–3439. CrossRefPubMedGoogle Scholar
  62. Gallistel CR (1990) The organization of learning, 1st edn. MIT, CambridgeGoogle Scholar
  63. Gallistel CR (1989) Animal cognition: the representation of space, time and number. Annu Rev Psychol 40:155–189CrossRefGoogle Scholar
  64. Giurfa M (2013) Cognition with few neurons: higher-order learning in insects. Trends Neurosci 36:285–294. CrossRefPubMedGoogle Scholar
  65. Goldschmidt D, Dasgupta S, Florentin W (2015) A neural path integration mechanism for adaptive vector navigation in autonomous agents. In: 2015 Int Jt Conf Neural Networks, pp 1–8Google Scholar
  66. Gould JL (2008) Animal navigation: the evolution of magnetic orientation. Curr Biol 18:R482–R484Google Scholar
  67. Gould JL (2004) Animal navigation. Curr Biol 14:R221–R224. CrossRefPubMedGoogle Scholar
  68. Gould JL (2014) Animal navigation: a map for all seasons. Curr Biol 24:R153–R155. CrossRefPubMedGoogle Scholar
  69. Gould JL (1986) The locale map of honey bees: do insects have cognitive maps. Science 232:861–863CrossRefGoogle Scholar
  70. Gould JL, Gould CG (2012) Nature’s compass: the mystery of animal navigation, 1st edn. Princeton University Press, PrincetonGoogle Scholar
  71. Govardovskii VI, Fyhrquist N, Reuter T et al (2000) In search of the visual pigment template. Vis Neurosci 17:509–528. CrossRefPubMedGoogle Scholar
  72. Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Graham P, Collett TS (2006) Bi-directional route learning in wood ants. J Exp Biol 209:3677–3684. CrossRefPubMedGoogle Scholar
  74. Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol. CrossRefPubMedGoogle Scholar
  75. Graham P, Philippides A, Baddeley B (2010) Animal cognition: multi-modal interactions in ant learning. Curr Biol 20:R639–R640. CrossRefPubMedGoogle Scholar
  76. Griffin DR (1952) Bird navigation. Biol Rev 27:359–390CrossRefGoogle Scholar
  77. Gunn DL (1975) The meaning of the term “klinokinesis”. Anim Behav 23:409–412. CrossRefPubMedGoogle Scholar
  78. Gunn DL, Kennedy JS, Pielou DP (1937) Classification of taxes and kineses. Nature 140:1064–1064. CrossRefGoogle Scholar
  79. Hagstrum JT (2013) Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic “map” cues. J Exp Biol 216:687–699. CrossRefPubMedGoogle Scholar
  80. Hansson L-A, Åkesson S (eds) (2014) Animal movement across scales. Oxford University Press, OxfordGoogle Scholar
  81. Heffner RS, Heffner HE (1982) Hearing in the Elephant (Elephas maximus): absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psychol 96:926–944CrossRefGoogle Scholar
  82. Hempel de Ibarra N, Philippides A, Riabinina O, Collett TS (2009) Preferred viewing directions of bumblebees (Bombus terrestris L.) when learning and approaching their nest site. J Exp Biol 212:3193–3204. CrossRefGoogle Scholar
  83. Hölldobler B (1980) Canopy orientation: a new kind of orientation in ants. Science 210:86–88. CrossRefPubMedGoogle Scholar
  84. Hölldobler B, Wilson EO (1990) The ants, 1st edn. Harvard University Press, CambridgeCrossRefGoogle Scholar
  85. Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208. CrossRefPubMedGoogle Scholar
  86. Hsu C-Y, Ko F-Y, Li C-W et al (2007) Magnetoreception system in honeybees (Apis mellifera). PLoS One 2:e395. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Huber R, Knaden M (2015) Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J Comp Physiol A 201:609–616. CrossRefGoogle Scholar
  88. Jacobs LF (2003) The evolution of the cognitive map. Brain Behav Evol 62:128–139. CrossRefPubMedGoogle Scholar
  89. Jacobs LF (2012) From chemotaxis to the cognitive map: the function of olfaction. Proc Natl Acad Sci USA 109(Suppl):10693–10700. CrossRefPubMedGoogle Scholar
  90. Jander R (1975) Ecological aspects of spatial orientation. Annu Rev Ecol Syst 6:171–188CrossRefGoogle Scholar
  91. Jander R (1963) Insect orientation. Annu Rev Entomol 8:95–114. CrossRefGoogle Scholar
  92. Jandt JM, Curry C, Hemauer S, Jeanne RL (2005) The accumulation of a chemical cue: nest-entrance trail in the German yellowjacket, Vespula germanica. Naturwissenschaften 92:242–245. CrossRefPubMedGoogle Scholar
  93. Johnsen S (2017) Open questions: we don’t really know anything, do we? Open questions in sensory biology. BMC Biol 15:43. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392:710–714. CrossRefGoogle Scholar
  95. Julle-Daniere E, Schultheiss P, Wystrach A et al (2014) Visual matching in the orientation of desert ants (Melophorus bagoti): the effect of changing skyline height. Ethology 120:783–792. CrossRefGoogle Scholar
  96. Junger W (1991) Waterstriders (Gerris paludum F.) compensate for drift with a discontinuously working visual position servo. J Comp Physiol A 169:633–639Google Scholar
  97. Klatzky RL (1998) Allocentric and egocentric spatial representations: definitions, distinctions, and interconnections. In: Freksa C, Habel C, Wender KF (eds) Spatial cognition—an interdisciplinary approach to representation and processing of spatial knowledge. Springer, Berlin Heidelberg, pp 1–17Google Scholar
  98. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12. CrossRefPubMedGoogle Scholar
  99. Kramer G (1957) Experiments on bird orientation and their interpretation. Ibis (Lond 1859) 99:196–227. CrossRefGoogle Scholar
  100. Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol A 129:1–4CrossRefGoogle Scholar
  101. Lambrinos D, Möller R, Labhart T et al (2000) Mobile robot employing insect strategies for navigation. Rob Auton Syst 30:39–64. CrossRefGoogle Scholar
  102. Leask MJ (1977) A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267:144–145. CrossRefPubMedGoogle Scholar
  103. Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:711–720. CrossRefPubMedGoogle Scholar
  104. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47:1940–1951. CrossRefGoogle Scholar
  105. Lipp H-P, Vyssotski AL, Wolfer DP et al (2004) Pigeon homing along highways and exits. Curr Biol 14:1239–1249. CrossRefPubMedGoogle Scholar
  106. Lohmann KJ, Lohmann CMF (1996) Orientation and open-sea navigation in sea turtles. J Exp Biol 199:73–81PubMedGoogle Scholar
  107. Lohmann KJ, Lohmann CMF, Putman NF (2007) Magnetic maps in animals: nature’s GPS. J Exp Biol 210:3697–3705. CrossRefPubMedGoogle Scholar
  108. Lohmann KJ, Luschi P, Hays GC (2008) Goal navigation and island-finding in sea turtles. J Exp Mar Bio Ecol 356:83–95. CrossRefGoogle Scholar
  109. Luschi P, Hays GC, Del Seppia C et al (1998) The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc Biol Sci 265:2279–2284. CrossRefPubMedPubMedCentralGoogle Scholar
  110. Mandal S, Brahma A, Gadagkar R (2017) Homing in a tropical social wasp: role of spatial familiarity, motivation and age. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203:1–13. CrossRefGoogle Scholar
  111. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954. CrossRefGoogle Scholar
  112. Marshall J, Cronin TW (2011) Polarisation vision. Curr Biol 21:R101–R105. CrossRefPubMedGoogle Scholar
  113. Menzel R, Greggers U (2013) Guidance by odors in honeybee navigation. J Comp Physiol A 199:867–873. CrossRefGoogle Scholar
  114. Menzel R, Greggers U, Smith A et al (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040–3045. CrossRefPubMedGoogle Scholar
  115. Mittelstaedt H, Mittelstaedt ML (1973) Mechanismen der Orientierung ohne richtende Außenreize. Fortschr Zool 21:46–58Google Scholar
  116. Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566–567CrossRefGoogle Scholar
  117. Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511. CrossRefPubMedGoogle Scholar
  118. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260. CrossRefGoogle Scholar
  119. Mouritsen H (1998) Modelling migration: the clock-and-compass model can explain the distribution of ringing recoveries. Anim Behav 56:899–907CrossRefGoogle Scholar
  120. Mouritsen H, Derbyshire R, Stalleicken J et al (2013) An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc Natl Acad Sci 110:7348–7353. CrossRefPubMedGoogle Scholar
  121. Mueller T, Fagan WF (2008) Search and navgation in dynamic environments—from individual behaviours to population distributions. Oikos 117:654–664. CrossRefGoogle Scholar
  122. Muheim R, Sjöberg S, Pinzon-Rodriguez A (2016) Polarized light modulates light-dependent magnetic compass orientation in birds. Proc Natl Acad Sci 113:1654–1659. CrossRefPubMedGoogle Scholar
  123. Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530. CrossRefGoogle Scholar
  124. Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812. CrossRefPubMedGoogle Scholar
  125. Nicholson DJ, Judd SPD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838PubMedGoogle Scholar
  126. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  127. Pahl M, Zhu H, Tautz J, Zhang S (2011) Large scale homing in honeybees. PLoS One 6:1–7. CrossRefGoogle Scholar
  128. Papi F (1990) Homing phenomena: mechanisms and classifications. Ethol Ecol Evol 2:3–10. CrossRefGoogle Scholar
  129. Papi F (ed) (1992) Animal Homing, 1st edn. Chapman and Hall Animal Behaviour Series, LondonGoogle Scholar
  130. Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus yulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37Google Scholar
  131. Perdeck AC (1967) Orientation of Starlings after displacement to Spain. Ardea 55:194–202Google Scholar
  132. Pfeffer SE, Wittlinger M (2016) Optic flow odometry operates independently of stride integration in carried ants. Science 353:1155–1157. CrossRefPubMedGoogle Scholar
  133. Phillips JB, August I (1986) Two magnetoreception pathways in a migratory salamander. Science 233:765–767. CrossRefPubMedGoogle Scholar
  134. Phillips JB, Jorge PE, Muheim R (2010) Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 7:S241–S256. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Phillips JB, Schmidt-Koenig K, Muheim R (2006) True navigation: sensory bases of gradient maps. In: Brown MF, Cook RG (eds) Animal spatial cognition: behavioral, comparative, computational & neural approaches, [On-line]. Available.
  136. Poteser M, Kral K (1995) Visual distance discrimination between stationary targets in praying mantis: an index of the use of motion parallax. J Exp Biol 198:2127–2137PubMedGoogle Scholar
  137. Poucet B (1993) Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol Rev 100:163–182CrossRefGoogle Scholar
  138. Putman NF, Endres CS, Lohmann CMF, Lohmann KJ (2011) Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol 21:463–466. CrossRefPubMedGoogle Scholar
  139. Putman NF, Lohmann KJ, Putman EM et al (2013) Evidence for geomagnetic imprinting as a homing mechanism in pacific salmon. Curr Biol 23:312–316. CrossRefPubMedGoogle Scholar
  140. Putman NF, Scanlan MM, Billman EJ et al (2014) An inherited magnetic map guides oceannavigation in juvenile pacific salmon. Curr Biol 24:446–450. CrossRefPubMedGoogle Scholar
  141. Reinhard J, Srinivasan MV (2009) The role of scents in honey bee foraging and recruitment. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches, 1st edn. CRC, Boca Raton, pp 155–172Google Scholar
  142. Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381. CrossRefPubMedGoogle Scholar
  143. Reynolds AM, Smith AD, Menzel R et al (2007) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961. CrossRefPubMedGoogle Scholar
  144. Robert T, Frasnelli E, de Ibarra NH, Collett TS (2018) Variations on a theme: bumblebee learning flights from the nest and from flowers. J Exp Biol jeb. CrossRefGoogle Scholar
  145. Rothman RJ, Mech DL (1979) Scent-marking in lone wolves and newly formed pairs. Anim Behav 27:750–760CrossRefGoogle Scholar
  146. Saleh N, Scott AG, Bryning GP, Chittka L (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod Plant Interact 1:119–127. CrossRefGoogle Scholar
  147. Santschi F (1911) Observations et remarques critiques sur Le mécanisme de L’orientation chez les fourmis. Rev Suisse Zool 19:303–338Google Scholar
  148. Schmidt-Koenig K (1970) Entfermmg und Heimkehrverhahen der Brieftaube. Z Vgl Physiol 68:39–48CrossRefGoogle Scholar
  149. Schöne H, Strausfeld C (1984) Spatial orientation: the spatial control of behavior in animals and man, 1st edn. Princeton University Press, PrincetonGoogle Scholar
  150. Schultheiss P, Cheng K, Reynolds AM (2015) Searching behavior in social Hymenoptera. Learn Motiv 50:59–67. CrossRefGoogle Scholar
  151. Schwarz S, Wystrach A, Cheng K (2011) A new navigational mechanism mediated by ant ocelli. Biol Lett 7:856–858. CrossRefPubMedPubMedCentralGoogle Scholar
  152. Shettleworth SJ (2010) Cognition, evolution and behavior, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  153. Sommer S, Beeren C, Von Wehner R (2008) Multiroute memories in desert ants. Proc Natl Acad Sci USA 105:317–322. CrossRefPubMedGoogle Scholar
  154. Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853. CrossRefPubMedGoogle Scholar
  155. Srinivasan MV, Zhang S, Lehrer M (1998) Honeybee navigation: odometry with monocular input. Anim Behav 56:1245–1259. CrossRefPubMedGoogle Scholar
  156. Srinivasan MV, Zhang S, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–244PubMedGoogle Scholar
  157. Steck K (2012) Just follow your nose: homing by olfactory cues in ants. Curr Opin Neurobiol 22:231–235. CrossRefPubMedGoogle Scholar
  158. Sturgis SJ, Greene MJ, Gordon DM (2011) Hydrocarbons on Harvester ant (Pogonomyrmex barbatus) middens guide foragers to the nest. J Chem Ecol 37:514–524. CrossRefPubMedGoogle Scholar
  159. Stürzl W, Zeil J, Boeddeker N, Hemmi JM (2016) How wasps acquire and use views for homing. Curr Biol 26:470–482. CrossRefPubMedGoogle Scholar
  160. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208CrossRefGoogle Scholar
  161. Towne WF, Ritrovato AE, Esposto A, Brown DF (2017) Honeybees use the skyline in orientation. J Exp Biol. CrossRefPubMedGoogle Scholar
  162. Townsend CR (1974) Mucus trail following by the snail Biomphalaria glabrata (Say). Anim Behav 22:170–177CrossRefGoogle Scholar
  163. Traniello JFA, Robson SK (1995) Trail and territorial communication in social insects. In: Chemical ecology of insects 2. Springer, Boston, pp 241–286CrossRefGoogle Scholar
  164. Tsoar A, Nathan R, Bartan Y et al (2011) Large-scale navigational map in a mammal. Proc Natl Acad Sci 108:E718–E724. CrossRefPubMedGoogle Scholar
  165. Vannini M, Cannicci S (1995) Homing behaviour and possible cognitive maps in crustacean decapods. J Exp Mar Bio Ecol 193:67–91. CrossRefGoogle Scholar
  166. Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212. CrossRefPubMedGoogle Scholar
  167. von Frisch K (1950) Die Sonne als Kompass im Leben der Bienen. Experientia 6:210–221CrossRefGoogle Scholar
  168. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  169. Wajnberg E, Acosta-Avalos D, Alves OC et al (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7(Suppl 2):S207–S225. CrossRefPubMedPubMedCentralGoogle Scholar
  170. Walker MM, Bitterman ME (1989) Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145:489–494Google Scholar
  171. Walker MM, Dennis TE, Kirschvink JL (2002) The magnetic sense and its use in long-distance navigation by animals. Curr Opin Neurobiol 12:735–744. CrossRefPubMedGoogle Scholar
  172. Wallraff HG (1974) Das Navigationssystem der Vögel. Schriftenreihe “Kybernetik”. Oldenbourg, München WienGoogle Scholar
  173. Wallraff HG (2015) An amazing discovery: bird navigation based on olfaction. J Exp Biol 218:1464–1466. CrossRefPubMedGoogle Scholar
  174. Wallraff HG, Andreae MO (2000) Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus Ser B Chem Phys Meteorol 52:1138–1157. CrossRefGoogle Scholar
  175. Warrant EJ (2016) Sensory matched filters. Curr Biol 26:R976–R980. CrossRefPubMedGoogle Scholar
  176. Warrant EJ, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254. CrossRefPubMedGoogle Scholar
  177. Warrant EJ, Dacke M (2016) Visual navigation in nocturnal insects. Physiology 31:182–192. CrossRefPubMedGoogle Scholar
  178. Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298. CrossRefGoogle Scholar
  179. Wehner R (1987) “Matched filters”—neural models of the external world. J Comp Physiol A 161:511–531. CrossRefGoogle Scholar
  180. Wehner R (1992) Arthropods. In: Papi F (ed) Animal homing. Chapman and Hall, London, pp 45–144CrossRefGoogle Scholar
  181. Wehner R (1972) Spontaneous pattern preferences of Drosophila melanogaster to black areas in various parts of the visual field. J Insect Physiol 18:1531–1543. CrossRefPubMedGoogle Scholar
  182. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96Google Scholar
  183. Wehner R, Boyer M, Loertscher F et al (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79. CrossRefPubMedGoogle Scholar
  184. Wehner R, Hoinville T, Cruse H, Cheng K (2016) Steering intermediate courses: desert ants combine information from various navigational routines. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202:459–472. CrossRefPubMedGoogle Scholar
  185. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  186. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579. CrossRefPubMedGoogle Scholar
  187. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30CrossRefGoogle Scholar
  188. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338. CrossRefGoogle Scholar
  189. Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne’s thread? Ethol Ecol Evol 2:27–48. CrossRefGoogle Scholar
  190. Weissburg MJ, Zimmer-Faust RK (1994) Odor plumes and how blue crabs use them in finding prey. J Exp Biol 197:349–375PubMedGoogle Scholar
  191. Wiener JM, Shettleworth S, Bingman VP et al (2011) Animal navigation: a synthesis. In: Menzel R, Fischer J (eds) Animal thinking: contemporary issues in comparative cognition, 1st edn. MIT, Cambridge, pp 51–76Google Scholar
  192. Wilcock WSD, Stafford KM, Andrew RK, Odom RI (2014) Sounds in the ocean at 1–100 Hz. Ann Rev Mar Sci 3:1–24. CrossRefGoogle Scholar
  193. Wilson DA, Stevenson RJ (2006) Learning to smell: olfactory perception from neurobiology to behavior. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  194. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693. CrossRefGoogle Scholar
  195. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967. CrossRefPubMedGoogle Scholar
  196. Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207. CrossRefPubMedGoogle Scholar
  197. Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641. CrossRefPubMedGoogle Scholar
  198. Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215:44–55. CrossRefPubMedGoogle Scholar
  199. Wystrach A, Graham P (2012) What can we learn from studies of insect navigation? Anim Behav 84:13–20. CrossRefGoogle Scholar
  200. Wystrach A, Philippides A, Aurejac A et al (2014) Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:615–626. CrossRefPubMedGoogle Scholar
  201. Wystrach A, Schwarz S, Baniel A, Cheng K (2013) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B 280:. CrossRefGoogle Scholar
  202. Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) I. Description of flight. J Comp Physiol A 172:189–205. CrossRefGoogle Scholar
  203. Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Spheeidae ; Hymenoptera) II. Similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172:207–222CrossRefGoogle Scholar
  204. Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199:245–252PubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.TA-09, Centre for Ecological Sciences, Division of Biological SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.Lab No. 4033, Biological Laboratories, Department of Molecular and Cellular Biology/Center for Brain ScienceHarvard UniversityCambridgeUSA

Personalised recommendations