Insectes Sociaux

, Volume 65, Issue 3, pp 503–506 | Cite as

Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae)

  • E. CsataEmail author
  • J. Billen
  • A. Bernadou
  • J. Heinze
  • B. Markó
Short Communication


Cuticle quality is of vital importance in insects. It prevents desiccation, provides mechanical strength and protects against pathogens. The within-species variation of cuticular structure is affected by many factors. We investigated the relationship of the presence/absence of the ectoparasitic fungus Rickia wasmannii and cuticle thickness of its ant host Myrmica scabrinodis. Infected ants had thinner cuticle than uninfected ones, while there were also differences among populations. It is unclear whether reduced thickness is the host’s response, or whether the fungus infects preferentially colonies with ants that have a thin cuticle. Either way, within-species variation is linked to the presence of an epicuticular parasite.


Anatomy Exoskeleton Laboulbeniales Myrmica scabrinodis Rickia wasmannii 



We are indebted to Birgit Lautenschläger and An Vandoren for their considerable help with the preparation of the histological sections. We are grateful to Alexandra Schrempf, Kriszta-Kincső Keresztes, Magdalena Witek, István Maák, Piotr Ślipiński and Luca Pietro Casacci for their advices and for their help during field collection. We also thank the critical comments of two anonymous referees. E.Cs. and B.M. were supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-1930. B.M. was also supported by the Bolyai János scholarship of the Hungarian Academy of Sciences.


  1. Báthori F, Csata E, Tartally A (2015) Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J Invertebr Pathol 126:78–82CrossRefPubMedGoogle Scholar
  2. Benjamin RK (1971) Introduction and supplement to Roland Thaxter’s contribution towards a monograph of the Laboulbeniaceae. Lehre, New York, p 155Google Scholar
  3. Csata E, Erős K, Markó B (2014) Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc 61:247–252CrossRefGoogle Scholar
  4. Csata E, Timuş N, Witek M, Casacci LP, Lucas C, Bagnères AG, Sztencel-Jabłonka A, Barbero F, Bonelli S, Rákosy L, Markó B (2017a) Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci Rep 7:46323CrossRefPubMedPubMedCentralGoogle Scholar
  5. Csata E, Bernadou A, Rákosy-Tican E, Heinze J, Markó B (2017b) Age-related effects of fungal infection and physiological condition on the locomotory behavior of the ant Myrmica scabrinodis. J Insect Physiol 98:167–172CrossRefPubMedGoogle Scholar
  6. Espadaler X, Santamaria S (2012) Ecto- and endoparasitic fungi on ants from the Holarctic Region. psyche:1–10Google Scholar
  7. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  8. Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302CrossRefGoogle Scholar
  9. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric 312 models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  10. Hughes DP, Araujo JPM, Loreto RG, Quevillon L, de Bekker C, Evans HC (2016) From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:437–469PubMedGoogle Scholar
  11. Małagocka J, Bruun Jensen A, Eilenberg J (2017) Pandora formicae, a specialist ant pathogenic fungus: new insights into biology and taxonomy. J Invertebr Pathol 143:108–114CrossRefPubMedGoogle Scholar
  12. Markó B, Csata E, Erős K, Német E, Czekes ZS, Rózsa L (2016) Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J Invertebr Pathol 136:74–80CrossRefPubMedGoogle Scholar
  13. Moroń D, Witek M, Woyciechowski M (2008) Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim Behav 75:345–350CrossRefGoogle Scholar
  14. Nation JL (2016) Insect physiology and biochemistry, 3rd edn. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  15. Peeters C, Molet M, Lin CC, Billen J (2017) Evolution of cheaper workers in ants: a comparative study of exoskeleton thickness. Biol J Linn Soc 121:556–563CrossRefGoogle Scholar
  16. Pinheiro J, Bates D, DebRoy S, Sarkar D (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–128.
  17. Radchenko AG, Elmes GW (2010) Myrmica ants (Hymenoptera, Formicidae) of the old world. Natura Optima Dux Foundation, WarszawaGoogle Scholar
  18. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  19. Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006) Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357CrossRefPubMedGoogle Scholar
  20. Santamaria S, Espadaler X (2015) Rickia lenoirii, a new ectoparasitic species, with comments on world Laboulbeniales associated with ants. Mycoscience 56:224–229CrossRefGoogle Scholar
  21. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  22. Shik JZ, Kaspari M, Yanoviak SP (2011) Preliminary assessment of metabolic costs of the nematode Myrmeconema neotropicum on its host, the tropical ant Cephalotes atratus. J Parasitol 97:958–959CrossRefPubMedGoogle Scholar
  23. St. Leger RJ, Charnley AK, Cooper RM (1987) Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 253:221–232CrossRefPubMedGoogle Scholar
  24. Tragust S, Tartally A, Espadaler X, Billen J (2016) Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol News 23:81–89Google Scholar
  25. Verble RM, Meyer AD, Kleve MG, Yanoviak SP (2012) Exoskeletal thinning in Cephalotes atratus ants (Hymenoptera: Formicidae) parasitized by Myrmeconema neotropicum (Nematoda: Tetradonematidae). J Parasitol 98:226–228CrossRefPubMedGoogle Scholar
  26. Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199CrossRefPubMedGoogle Scholar
  27. Weir A, Blackwell M (2005) Phylogeny of arthropod ectoparasitic ascomycetes. In: Vega FE, Blackwell M (eds) Insect-Fungal Associations: ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  28. Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  29. Witek M, Barbero F, Markó M (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc 6:307–323CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Hungarian Department of Biology and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI)Université de Toulouse, CNRS, UPSToulouseFrance
  3. 3.Zoological InstituteUniversity of LeuvenLeuvenBelgium
  4. 4.Zoology/Evolutionary BiologyUniversity of RegensburgRegensburgGermany
  5. 5.Department of EcologyUniversity of SzegedSzegedHungary

Personalised recommendations