Insectes Sociaux

, Volume 65, Issue 3, pp 381–391 | Cite as

The membrane phospholipid composition of honeybee (Apis mellifera) workers reflects their nutrition, fertility, and vitellogenin stores

  • J. WegenerEmail author
  • U. Jakop
  • J. Schiller
  • K. Müller
Research Article


Pollen feeding in the honeybee (Apis mellifera) is dependent on the caste, ethotype, and dominance status of individuals. Pollen is the near-exclusive external source of lipids for the colony. Lipids from pollen are rich in polyunsaturated fatty acyl residues, which, because of their sensitivity to lipid peroxidation, have been suggested to limit the lifespan of individual bees. We here investigated whether the spectrum of phosphatidylcholine (PC), the main class of membrane-constituting lipids in insects, is indeed, connected to pollen feeding. We further studied the relationship between pollen feeding, PC spectra, and fat-body stores of vitellogenin, an indicator of potential longevity in bees. For this, we determined the pollen consumption, PC spectra, abdominal vitellogenin stores, and behavioral as well as reproductive status of individuals in queenless groups of workers. In contrast to earlier studies, we found that reproduction in workers is not universally linked to trophallactic dominance alone, but can be accompanied by strong pollen consumption. Pollen consumption seemed connected to a strong remodeling of tissue PC spectra. There was no systematic link between these spectra and trophallactic activity, but individuals with strongly deviating spectra also showed extreme behavioral profiles. Abdominal vitellogenin was strongly and positively linked to pollen-influenced PC spectra and the prevalence of polyunsaturated fatty acyl residues, contradicting the hypothesis that pollen consumption is systematically leading to a shorter lifespan in workers. Our results suggest that the association between pollen consumption, short lifespan, and functional sterility that differentiates workers from queens cannot in all cases be extended to the situation within the worker caste.


Honeybee Worker reproduction Vitellogenin Pollen Phosphatidylcholine MALDI-TOF Polyunsaturated fatty acids Social dominance Trophallaxis Lipid peroxidation 



We thank Christiane Franz, Susanne Pyttel, and Kristin Zschörnig for their help with the analysis and identification of lipids, and Kaspar Bienefeld for critical remarks on the manuscript. This work was partly supported by the German Research Council (DFG Schi 476/12-2 and Mu 1520/4-2).


  1. Abbott SK, Else PL, Atkins TA, Hulbert AJ (2012) Fatty acid composition of membrane bilayers: Importance of diet polyunsaturated fat balance. Biochim Biophys Acta Biomembr 1818:1309–1317. CrossRefGoogle Scholar
  2. Amdam GV et al (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39:767–773CrossRefPubMedGoogle Scholar
  3. Amdam GV (2011) Social context, stress, and plasticity of aging. Aging Cell 10:18–27. CrossRefPubMedGoogle Scholar
  4. Amdam GV, Aase ALTO., Seehuus SC, Fondrk MK, Norberg K, Hartfelder K (2005a) Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40:939–947CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amdam GV, Norberg K, Omholt SW, Kryger P, Lourenco AP, Bitondi MMG, Simoes ZLP (2005b) Higher vitellogenin concentrations in honey bee workers may be an adaptation to life in temperate climates. Insectes Soc 52:316–319CrossRefGoogle Scholar
  6. Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015) Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci USA 112:15761–15766. PubMedCrossRefGoogle Scholar
  7. Basile R, Pirk CWW, Tautz J (2008) Trophallactic activities in the honeybee brood nest—heaters get supplied with high performance fuel. Zoology 111:433–441. CrossRefPubMedGoogle Scholar
  8. Beenakkers AMT (1969) Carbohydrate and fat as a fuel for insect flight. A comparative study. J Insect Physiol 15:353–361. CrossRefPubMedGoogle Scholar
  9. Bitondi MM, Simoes ZLP (1996) The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titres in Africanized Apis mellifera workers. J Apic Res 35:27–36CrossRefGoogle Scholar
  10. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. CrossRefPubMedGoogle Scholar
  11. Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46. CrossRefPubMedGoogle Scholar
  12. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50:631–642Google Scholar
  13. Colinet H, Renault D, Javal M, Berkova P, Simek P, Kostal V (2016) Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach. Biochim Et Biophys Acta Mol Cell Biol Lipids 1861:1736–1745. CrossRefGoogle Scholar
  14. Crailsheim K, Hrassnigg N, Gmeinbauer R, Szolderits MJ, Schneider LHW, Brosch U (1993) Pollen utilization in non-breeding honeybees in winter. J Insect Physiol 39:369–373. CrossRefGoogle Scholar
  15. Dade HA (1962) Anatomy and dissection of the honeybee. International Bee Research Association, LondonGoogle Scholar
  16. Fuchs B, Schober C, Richter G, Süss R, Schiller J (2007) MALDI-TOF MS of phosphatidylethanolamines: different adducts cause different post source decay (PSD) fragment ion spectra. J Biochem Biophys Methods 70:689–692. CrossRefPubMedGoogle Scholar
  17. Graham J, Ambrose J, Langstroth L (1992) The hive and the honey bee. Revised Edition. Dadant & Sons, HamiltonGoogle Scholar
  18. Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt SV, Simoes ZLP, Hartfelder K (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett 579:4961–4965CrossRefPubMedGoogle Scholar
  19. Guschina IA, Harwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483. CrossRefPubMedGoogle Scholar
  20. Haddad LS, Kelbert L, Hulbert AJ (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp Gerontol 42:601–609. CrossRefPubMedGoogle Scholar
  21. Havukainen H, Münch D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, Amdam GV (2013) Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem 288:28369–28381. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haydak MH (1970) Honeybee nutrition. Annu Rev Entomol 15:143–156CrossRefGoogle Scholar
  23. Hepburn HR, Bernard RT, Davidson BC, Muller WJ, Lloyd P, Kurstjens SP, Vincent SL (1991) Synthesis and secretion of beeswax in honeybees. Apidologie 22:21–36CrossRefGoogle Scholar
  24. Hodkova N, Simek P, Zahradnickova H, Novakova O (1999) Seasonal changes in the phospholipid composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochem Mol Biol 29:367–376CrossRefGoogle Scholar
  25. Hsieh Y-S, Hsu C-Y (2011a) The changes of age-related molecules in the trophocytes and fat cells of queen honeybees (Apis mellifera). Apidologie 42:728–739. CrossRefGoogle Scholar
  26. Hsieh Y-S, Hsu C-Y (2011b) Honeybee trophocytes and fat cells as target cells for cellular senescence studies. Exp Gerontol 46:233–240. CrossRefPubMedGoogle Scholar
  27. Hulbert AJ, Abbott SK (2012) Nutritional ecology of essential fatty acids: an evolutionary perspective. Aust J Zool 59:369–379. CrossRefGoogle Scholar
  28. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213. CrossRefPubMedGoogle Scholar
  29. IBM (2011) IBM SPSS statistics 20 core system user’s guide. IBM Corporation, ArmonkGoogle Scholar
  30. Kent CF, Issa A, Bunting AC, Zayed A (2011) Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera. Mol Ecol 20:5226–5235. CrossRefPubMedGoogle Scholar
  31. Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Alternat Med 2015:297425 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Koštál VR, Berková P, Šimek P (2003) Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comp Biochem Physiol B Biochem Mol Biol 135:407–419. CrossRefPubMedGoogle Scholar
  33. Lercker G, Capella P, Conte LS, Ruini F, Giordani G (1981) Components of royal jelly: I. Identification of the organic acids. Lipids 16:912–919. CrossRefGoogle Scholar
  34. Lercker G, Capella P, Conte LS, Ruini F, Giordani G (1982) Components of Royal Jelly II. The lipid fraction, hydrocarbons and sterols. J Apic Res 21:178–184. CrossRefGoogle Scholar
  35. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim et Biophys Acta 1666:142–157. CrossRefGoogle Scholar
  36. Maurizio A (1954) Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.). Landwirtschaftliches Jahrbuch der Schweiz 68:115–182Google Scholar
  37. Maurizio A (1961) Lebensdauer und Altern bei der Honigbiene (Apis mellifica L.). Gerontologia 5:110–128CrossRefGoogle Scholar
  38. Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5:673–677CrossRefGoogle Scholar
  39. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006. CrossRefGoogle Scholar
  40. Page RE Jr, Peng CYS (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 36:695–711. CrossRefPubMedGoogle Scholar
  41. Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. Biochim et Biophys Acta 1777:1249–1262. CrossRefGoogle Scholar
  42. Pamplona R, Portero-Otín M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 39:1989–1994PubMedGoogle Scholar
  43. Piskorski R, Kroder S, Dorn S (2011) Can pollen headspace volatiles and pollenkitt lipids serve as reliable chemical cues for bee pollinators? Chem Biodivers 8:577–586. CrossRefPubMedGoogle Scholar
  44. Pujol-Lereis LM, Fagali NS, Rabossi A, Catalá Á, Quesada-Allué LA (2016) Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. J Insect Physiol 87:53–62. CrossRefPubMedGoogle Scholar
  45. Ribbands CR (1953) The behaviour and social life of honeybees. Bee Research Association, LondonGoogle Scholar
  46. Rodríguez E, Weber J-M, Pagé B, Roubik DW, Suarez RK, Darveau C-A (2015) Setting the pace of life: membrane composition of flight muscle varies with metabolic rate of hovering orchid bees. Proc R Soc B Biol Sci. CrossRefGoogle Scholar
  47. Sakagami SF (1954) Occurrence of an aggressive behaviour in queenless hives, with considerations on the social organizytion of honeybee. Insectes Soc 1:331–343CrossRefGoogle Scholar
  48. Schiller J et al (2001) CsCl as an auxiliary reagent for the analysis of phosphatidylcholine mixtures by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chem Phys Lipids 113:123–131. CrossRefPubMedGoogle Scholar
  49. Schiller J et al (2003) Analysis of the lipid composition of bull spermatozoa by MALDI-TOF mass spectrometry—a cautionary note. Chem Phys Lipids 126:85–94. CrossRefPubMedGoogle Scholar
  50. Schippers MP, Dukas R, McClelland GB (2010) Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. J Comp Physiol B 180:45–55CrossRefPubMedGoogle Scholar
  51. Schäfer MO et al (2006a) Individual versus social pathway to honeybee worker reproduction (Apis mellifera): pollen or jelly as protein source for oogenesis? J Comp Physiol A 192:761. CrossRefGoogle Scholar
  52. Schäfer MO et al (2006b) Individual versus social pathway to honeybee worker reproduction (Apis mellifera): pollen or jelly as protein source for oogenesis? J Comp Physiol A Sens Neural Behav Physiol 192:761–768CrossRefGoogle Scholar
  53. Seehuus S, Norberg K, Gimsa U, Krekling T, Amdam G (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA 103:962–967CrossRefPubMedGoogle Scholar
  54. Smedal B, Brynem M, Kreibich CD, Amdam GV (2009) Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J Exp Biol 212:3795–3801 CrossRefPubMedGoogle Scholar
  55. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035PubMedGoogle Scholar
  57. Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33. CrossRefGoogle Scholar
  58. Suarez RK, Lighton JR, Joos B, Roberts SP, Harrison JF (1996) Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees. Proc Natl Acad Sci 93:12616–12620. CrossRefPubMedGoogle Scholar
  59. Szczesna T (2006) Long-chain fatty acids composition of honeybee-collected pollen. J Apic Sci 50:65–79Google Scholar
  60. Tamaki Y (1966) Chemical composition of the way secreted by a scale insect (Ceroplastes pseudoceriferus Green). Lipids 1:297–300CrossRefPubMedGoogle Scholar
  61. Van Bilsen D, Hoekstra FA (1993) Decreased membrane integrity in aging Typha latifolia L. pollen (accumulation of lysolipids and free fatty acids). Plant Physiol 101:675–682CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wegener J, Huang ZY, Lorenz MW, Bienefeld K (2009a) Regulation of hypopharyngeal gland activity and oogenesis in honey bee (Apis mellifera) workers. J Insect Physiol 55:716–725CrossRefPubMedGoogle Scholar
  63. Wegener J, Lorenz MW, Bienefeld K (2009b) Physiological consequences of prolonged nursing in the honey bee. Insectes Soc 56:85–93CrossRefGoogle Scholar
  64. Wegener J, Ruhnke H, Scheller K, Mispagel S, Knollmann U, Kamp G, Bienefeld K (2016) Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony. J Insect Physiol 91–92:1–9. CrossRefPubMedGoogle Scholar
  65. Wegener J, Zautke F, Höcht S, Köhler B, Bienefeld K (2006) Suppression of worker fertility in the honeybee (Apis mellifera) by treatment with X-rays. J Apic Res 45:27–32CrossRefGoogle Scholar
  66. Wegener J, Zschörnig K, Onischke K, Fuchs B, Schiller J, Müller K (2013) Conservation of honey bee (Apis mellifera) sperm phospholipids during storage in the bee queen—a TLC/MALDI-TOF MS study. Exp Gerontol 48:213–222CrossRefPubMedGoogle Scholar
  67. Wei W, Wei M, Kang X, Deng H, Lu Z (2009) A novel method developed for acetylcholine detection in royal jelly by using capillary electrophoresis coupled with electrogenerated chemiluminescence based on a simple reaction. Electrophoresis 30:1949–1952. CrossRefPubMedGoogle Scholar
  68. Williams B, Onsman A, Brown T (2010) Exploratory factor analysis: a five-step guide for novices. J Emerg Primary Healthc 8 (Article No. 990399)Google Scholar
  69. Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge, LondonGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Bee Research InstituteHohen NeuendorfGermany
  2. 2.Leibniz-Institute for Zoo and Wildlife ResearchBerlinGermany
  3. 3.Institute for Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations