Insectes Sociaux

, Volume 65, Issue 2, pp 345–350 | Cite as

Mapping Azteca barbifex Forel (Hymenoptera: Formicidae) dispersal in georeferenced orange (Citrus sinensis [L.] Osbeck) orchard in the Eastern Amazon, Brazil

  • P. R. S. Farias
  • A. Y. Harada
  • C. C. Filgueiras
  • B. G. Lima
  • T. M. Sales
  • A. G. Silva
  • B. H. S. Souza
Short Communication


Damage to orange trees (Citrus sinensis [L.] Osbeck) as a result of Azteca barbifex Forel infestation in orchards of the Eastern Amazon, Brazil, has caused concern among farmers. The presence or absence of A. barbifex ants was sampled in a georeferenced orchard with 4600 plants from June 2007 to June 2008, and the six most representative months of infestation were analyzed. Dispersion patterns of A. barbifex were studied using semivariograms to determine the most suitable spatial distribution model of the species and kriging maps were drawn. Spherical semivariogram models best fit the spatial dispersion patterns of A. barbifex, showing that the patterns of damage resulted from attack foci. The density of A. barbifex nests increased during the dry period, with drastic reduction in the rainy season. The results show that geostatistics is a useful tool for evaluating A. barbifex spatial and temporal distributions and to define reliable sampling plans for use in integrated pest management.


Ant Geostatistics Semivariogram Kriging Insect distribution 


Compliance with ethical standards

Conflict of interest

The authors declare they do not have conflict of interest.


  1. Adams ES (1994) Territory defense by the ant Azteca trigona: maintenance of an arboreal ant mosaic. Oecologia 97:202–208CrossRefPubMedGoogle Scholar
  2. AntWiki (2017) Azteca barbifex. Accessed 18 Aug 2017
  3. Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430CrossRefGoogle Scholar
  4. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  5. Avelino J, Hoopen GM, DeCLerck FAJ (2011) Ecological mechanisms for pest and desease control on coffee and cacau agroecosystems of the neotropics. In: Raphidel D, XeClerck F, Le Coq JF, Ber J Ecosystem services from agriculture and agroforesty: measurement and payment. MapSet Ltd, Gateshead, pp 91–118Google Scholar
  6. Benson WW (1985) Amazon ant-plants. In: Prance G, Lovejoy T (eds) Amazônia. Pergamon Press, New York, pp 239–266Google Scholar
  7. Bronstein JL, Alarcon R, Geber M (2006) The evolution of plant–insect mutualisms. New Phytol 172:412–428CrossRefPubMedGoogle Scholar
  8. Cuezo F (2003) Subfamilia Dolichoderinae. In: Fernández F (ed) Introducción a las hormigas de la región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 291–297Google Scholar
  9. Davidson DW, Mckey D (1993) The evolutionary ecology of symbiotic and ant–plant relationships. J Hymenopt Res 2:13–83Google Scholar
  10. Delabie JHC, Jahyny B, do Nascimento I, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantation to the conservation of native ants (Insecta: Hymenoptera:Formicidae) with a special emphasis on the Atlantic Forest fauna of south Bahia. Bras Biodivers Conserv 16:2359–2384CrossRefGoogle Scholar
  11. Depickere S, Fresneau D, Deneubourg JL (2008) Effect of social and environmental factors on ant aggregation: a general response? J Insect Physiol 54:1349–1355CrossRefPubMedGoogle Scholar
  12. Dinardo-Miranda LL, Fracasso JV (2010) Spatial and temporal variability of plant-parasitic nematodes population in sugarcane. Bragantia 69:39–52CrossRefGoogle Scholar
  13. Downing JA (1986) Spatial heterogeneity: evolved behavior or mathematical artifact? Nature 323:255–257CrossRefGoogle Scholar
  14. Farias PRS, Sánchez-Vila X, Barbosa JC, Vieira SR, Ferraz LCCB., Solís-Delfin J (2002) Using geostatistical analysis to evaluate presence of Rotylenchulus reniformis in cotton crops in Brazil: economic implications. J Nematol 34:232–238PubMedPubMedCentralGoogle Scholar
  15. Farias PRS, Roberto SR, Lopes JRS, Perecin D (2004) Geostatistical characterization of the spatial distribution of Xylella fastidiosa sharpshooter vectors on citrus. Neotrop Entomol 33:13–20CrossRefGoogle Scholar
  16. Farias PRS, Harada AY, Silva AG, Monteiro BS, Rodrigues NEL, Santos NA (2010) Azteca barbifex Forel (Hymenoptera: Formicidae): potential pest of citrus crops in the Eastern Amazon. Neotrop Entomol 36:1056–1058CrossRefGoogle Scholar
  17. Fonseca CR (1994) Herbivory and the long-lived leaves of an Amazonian ant-tree. J Ecol 82:833–842CrossRefGoogle Scholar
  18. Forel A (1904) Miscellania myrmecologique. Rev Suisse Zool 12:1–52Google Scholar
  19. Golden Software Inc (2002) User’s guide. Colorado, USAGoogle Scholar
  20. Harada AY, Benson WW (1988) Espécies de Azteca (Hymenoptera, Formicidae) especializadas em Cecropia (Moraceae): distribuição geográfica e considerações ecológicas. Rev Bras Entomol 32:423–435Google Scholar
  21. Hölldobler B, Wilson EO (1990) The ants. Springer Verlag, BerlinCrossRefGoogle Scholar
  22. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of Köppen-Geigen climate classification. Meteorol Z 15:259–263CrossRefGoogle Scholar
  23. Lasmar O, Zanetti R, Santos A, Fernandes BV (2012) Use of geostatistics to determine the spatial distribution and infestation rate of leaf-cutting ant nests (Hymenoptera: Formicidae) in Eucalyptus plantations. Neotrop Entomol 41:324–332CrossRefPubMedGoogle Scholar
  24. Maia PSP (2008) Caracterização da distribuição espacial da mosca negra dos citros (Aleurocanthus woglumi Ashby, 1915) em pomar georreferenciado para determinar um plano de amostragem sequencial. 2008. 77 f. Dissertação (Mestrado). Universidade Federal Rural da Amazônia, BelémGoogle Scholar
  25. Nakano MA, Feitosa RM, Moraes CO, Adriano LDC, Hengles EP, Longui EL, Morini MSC (2012) Assembly of Myrmelanchista Roger (Formicidae: Formicinae) in twings fallen on the leaf litter of Brazilian Atlantic Forest. J Nat Hist 46:2103–2115CrossRefGoogle Scholar
  26. Rosumek FB, Silveira FAO, Neves FS, Barbosa NPV, Diniz L, Oki Y, Pezzini F, Fernandes GW, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549CrossRefPubMedGoogle Scholar
  27. Schultz TR, McGlynn TP (2000) The interaction of ants with another organisms. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 35–44Google Scholar
  28. Sétamou M, Flores D, French JV, Hall DG (2008) Dispersion patterns and Sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus. J Econ Entomol 101:1478–1487CrossRefPubMedGoogle Scholar
  29. Souza, DR, Fernandes TT, Nascimento JRO, Suguituru SS, Morini MSC (2012) Characterization of ant communities (Hymenoptera: Formicidae) in twigs in the leaf litter of the Atlantic rainforest and eucalyptus trees in the southeast region of Brazil. Psyche J Entomol 2012:1–12. CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  • P. R. S. Farias
    • 1
  • A. Y. Harada
    • 2
  • C. C. Filgueiras
    • 2
  • B. G. Lima
    • 1
  • T. M. Sales
    • 1
  • A. G. Silva
    • 1
  • B. H. S. Souza
    • 3
  1. 1.Department of Plant Biology and Plant Health, Institute of Agricultural SciencesFederal Rural University of AmazoniaBelémBrazil
  2. 2.Support for Zoology Research-Emilio Goeldi Museum/MCTBelémBrazil
  3. 3.Department of EntomologyThe University of Lavras, Câmpus UniversitárioLavrasBrazil

Personalised recommendations