Advertisement

Insectes Sociaux

, Volume 65, Issue 2, pp 225–231 | Cite as

Preadaptation for asexual queen succession: queen tychoparthenogenesis produces neotenic queens in the termite Reticulitermes okinawanus

  • T. Nozaki
  • T. Yashiro
  • K. Matsuura
Research Article

Abstract

Social insects have evolved diverse breeding systems. In the termite species Reticulitermes speratus, queens produce their neotenic replacements parthenogenetically while producing other colony members sexually. This asexual queen succession (AQS) system enables the colony to undergo queen succession and increase the number of queens while avoiding king–daughter inbreeding, which must otherwise result in loss of genetic diversity in the workforce. The evolution of this sophisticated breeding system requires both parthenogenetic ability and parthenogens’ developmental priority to become neotenic queens. However, the evolutionary process of these two components is unknown. In this study, we investigated the caste fate of the offspring produced by tychoparthenogenesis in a non-AQS termite species Reticulitermes okinawanus. The hatching rate of unfertilized eggs in R. okinawanus (0.97%) was much lower than that in the AQS species R. speratus (75%). Flow cytometry and genetic analyses were used to demonstrate that R. okinawanus tychoparthenogenesis produced diploid homozygous females. One-third of the daughters from unfertilized eggs developed into neotenics, while no sexually produced daughters differentiated into neotenics. These results suggest that parthenogenetic daughters have the developmental propensity to become neotenic queens prior to the inception of AQS.

Keywords

Evolution Parthenogenesis Breeding system Caste differentiation Isoptera 

Notes

Acknowledgements

We thank N. Mizumoto, T. Inagaki, J. Uto and S. Yanagihara for assistance in sample collection, Y. Namba for assistance in genetic analysis, and S. Dobata and K. Kobayashi for helpful discussion. Subtropical Field Science Center (Yona Field) of University of the Ryukyus provided the study field. This work was supported by the Japan Society for the Promotion of Science (JSPS) Kiban Kenkyu S No. 25221206 (to K. M.), and by the JSPS Research Fellowship for Young Scientists No. 16J08955 (to T. N.).

Supplementary material

40_2018_603_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 KB)

References

  1. Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, BerkeleyGoogle Scholar
  2. Carson HL (1967) Selection for parthenogenesis in Drosophila mercatorum. Genetics 55:157–171PubMedPubMedCentralGoogle Scholar
  3. Carson H, Wheeler M, Heed W (1957) A parthenogenetic strain of Drosophila mangabeirai Malogolowkin. Univ Texas Publ 5721:115–131Google Scholar
  4. Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, Bagnères AG, Mantovani B, Luchetti A (2016) Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol Phylogenet Evol 94:778–790CrossRefPubMedGoogle Scholar
  5. Dronnet S, Bagnères AG, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol Ecol Notes 4:127–129CrossRefGoogle Scholar
  6. Fisher RA (1930) The genetical theory of natural selection. Clarendon, OxfordCrossRefGoogle Scholar
  7. Fougeyrollas R, Dolejšová K, Sillam-Dussès D, Roy V, Poteaux C, Hanus R, Roisin Y (2015) Asexual queen succession in the higher termite Embiratermes neotenicus. Proc R Soc B 282:20150260CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fougeyrollas R, Křivánek J, Roy V, Dolejšová K, Frechault S, Roisin Y, Hanus R, Sillam-Dussès D (2017) Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus. Mol Ecol 26:3295–3308CrossRefPubMedGoogle Scholar
  9. Fournier D, Hellemans S, Hanus R, Roisin Y (2016) Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proc R Soc B 283:20160196CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jalvingh K, Bast J, Schwander T (2016) Evolution and maintenance of sex. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic, Oxford, pp 89–97CrossRefGoogle Scholar
  11. Kawatsu K, Matsuura K (2013) Preadaptation for parthenogenetic colony foundation in subterranean termites Reticulitermes spp. (Isoptera: Rhinotermitidae). J Ethol 31:123–128CrossRefGoogle Scholar
  12. Kobayashi K, Miyaguni Y (2016) Facultative parthenogenesis in the Ryukyu drywood termite Neotermes koshunensis. Sci Rep 6:30712CrossRefPubMedPubMedCentralGoogle Scholar
  13. Luchetti A, Velonà A, Mueller M, Mantovani B (2013) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae). Insect Soc 60:203–211CrossRefGoogle Scholar
  14. Maekawa K, Mizuno S, Koshikawa S, Miura T (2008) Compound eye development during caste differentiation in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Zool Sci 25:699–705CrossRefPubMedGoogle Scholar
  15. Matsuura K (2011) Sexual and asexual reproduction in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 255–277Google Scholar
  16. Matsuura K (2017) Evolution of asexual queen succession in Reticulitermes termites. J Exp Biol 220:63–72CrossRefPubMedGoogle Scholar
  17. Matsuura K, Kobayashi N (2007) Size, hatching rate, and hatching period of sexually and asexually produced eggs in the facultatively parthenogenetic termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Appl Entomol Zool 42:241–246CrossRefGoogle Scholar
  18. Matsuura K, Nishida T (2001) Comparison of colony foundation success between sexual pairs and female asexual units in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Popul Ecol 43:119–124CrossRefGoogle Scholar
  19. Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687CrossRefPubMedGoogle Scholar
  20. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  21. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9CrossRefPubMedGoogle Scholar
  22. Nozaki T, Matsuura K (2016) Termite queens have disproportionately more DNA in their fat body cells: reproductive division of labor and endoreduplication. Entomol Sci 19:67–71CrossRefGoogle Scholar
  23. Nunney L (1989) The maintenance of sex by group selection. Evolution 43:245–257CrossRefPubMedGoogle Scholar
  24. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 3 Dec 2016
  25. Stalker HD (1954) Parthenogenesis in Drosophila. Genetics 39:4–34PubMedPubMedCentralGoogle Scholar
  26. Suomalainen E (1962) Significance of parthenogenesis in the evolution of insects. Annu Rev Entomol 7:349–366CrossRefGoogle Scholar
  27. Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–829CrossRefPubMedGoogle Scholar
  28. Vargo EL, Labadie PE, Matsuura K (2012) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc B 279:813–819CrossRefPubMedGoogle Scholar
  29. Walsh P, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  30. Wenseleers T, Van Oystaeyen A (2011) Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. BioEssays 33:927–937CrossRefPubMedGoogle Scholar
  31. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia

Personalised recommendations