Allee effect in termite colony formation: influence of alate density and flight timing on pairing success and survivorship

Research Article
  • 91 Downloads

Abstract

The Allee effect is a positive relationship between any component of individual fitness and the density of conspecifics. Theoretical models predict that monogamy, where males and females are constrained from having multiple mates, is more susceptible to the Allee effect. In most termite species, including Reticulitermes spp., found new colonies by monogamous pairs (i.e., primary king and queen); however, little is known about the effects of alate density and flight timing on pairing and colony foundation success. In this study, a positive relationship between alate density and pairing success was observed in the subterranean termite, Reticulitermes speratus. Upon release of dealates (individuals after shedding wings) every 3 days for 9 days at 10, 20, 40, or 80 pairs/m2/day in a semi-natural field, no pairs were observed for the 10 pairs/m2/day treatment after 3 months. However, 7.5, 13.8, and 18.1% of dealates formed pairs in the 20, 40, and 80 pairs/m2/day groups, respectively. Most pairs (78.7%) comprised dealates released simultaneously, and 17.3 and 4% comprised dealates released 3 and 6 days apart, respectively. R. speratus also preferred brown rotten pine for colony foundations to white rotten oak. This study provides important new insights into the density effects and nest-site preference for termite colony foundation.

Keywords

Swarming Density effect Reticulitermes speratus Nest-site choice Dispersal Monogamous pairing 

Supplementary material

40_2017_580_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
40_2017_580_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 18 kb)
40_2017_580_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 30 kb)

References

  1. Allee W (1931) Animal aggregations: a study in a general sociology. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  2. Andrewartha H, Birch L (1954) The distribution and abundance of animals. University of Chicago Press, ChicagoGoogle Scholar
  3. Bessa-Gomes C, Danek-Gontard M, Cassey P, Møller AP, Legendre S, Clobert J (2003) Mating behaviour influences extinction risk: insights from demographic modelling and comparative analysis of avian extinction risk. Ann Zool Fenn 40:231–245Google Scholar
  4. Bessa-Gomes C, Legendre S, Clobert J (2004) Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol Lett 7:802–812. doi:10.1111/j.1461-0248.2004.00632.x CrossRefGoogle Scholar
  5. Boukal DS, Berec L (2002) Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J Theor Biol 218:375–394. doi:10.1006/jtbi.2002.3084 CrossRefPubMedGoogle Scholar
  6. Calabrese J, Fagan W (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37. doi:10.1086/421443 CrossRefPubMedGoogle Scholar
  7. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268. doi:10.1146/annurev.es.18.110187.001321 CrossRefGoogle Scholar
  8. Clark CW (1974) Possible effects of schooling on the dynamics of exploited fish populations. J Conseil 36:7–14CrossRefGoogle Scholar
  9. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410. doi:10.1016/S0169-5347(99)01683-3 CrossRefPubMedGoogle Scholar
  10. Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol 2. Academic Press, New York, pp 1–76Google Scholar
  11. Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour Model 3:481–538CrossRefGoogle Scholar
  12. Dronnet S, Bagneres AG, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol Ecol Notes 4:127–129CrossRefGoogle Scholar
  13. Dronnet S, Chapuisat M, Vargo EL, Caroline L, Bagnères A-G (2005) Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol Ecol 14:1311–1320. doi:10.1111/j.1365-294X.2005.02508.x CrossRefPubMedGoogle Scholar
  14. Engen S, Lande R, Sæther B-E (2003) Demographic stochasticity and Allee effect in populations with two sexes. Ecology 84:2378–2386. doi:10.1890/02-0123 CrossRefGoogle Scholar
  15. Fowler MS (2009) Density dependent dispersal decisions and the Allee effect. Oikos 118:604–614. doi:10.1111/j.1600-0706.2008.17321.x CrossRefGoogle Scholar
  16. Frankel O, Soulé ME (1981) Conservation and evolution. Cambridge University Press, CambridgeGoogle Scholar
  17. Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151:487–496. doi:10.1086/286135 CrossRefPubMedGoogle Scholar
  18. Husseneder C, Simms DM, Delatte JR, Wang C, Grace JK, Vargo EL (2012) Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol Invasions 14:419–437. doi:10.1007/s10530-011-0087-7 CrossRefGoogle Scholar
  19. Kobayashi K, Hasegawa E, Yamamoto Y, Kawatsu K, Vargo EL, Yoshimura J, Matsuura K (2013) Sex ratio biases in termites provide evidence for kin selection. Nat Commun 4:2048. doi:10.1038/ncomms3048 PubMedGoogle Scholar
  20. Kuussaari M, Saccheri I, Camara M, Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 384–392. doi:10.2307/3546980 
  21. Lamont BB, Klinkhamer PG, Witkowski E (1993) Population fragmentation may reduce fertility to zero in Banksia goodii—a demonstration of the Allee effect. Oecologia 94:446–450. doi:10.1007/bf00317122 CrossRefPubMedGoogle Scholar
  22. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460CrossRefPubMedGoogle Scholar
  23. Lee AM, Sæther B-E, Engen S (2011) Demographic stochasticity, Allee effects, and extinction: the influence of mating system and sex ratio. Am Nat 177:301–313. doi:10.1086/658344 CrossRefPubMedGoogle Scholar
  24. Legendre S, Clobert J, Møller AP, Sorci G (1999) Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand. Am Nat 153:449–463. doi:10.1086/303195 CrossRefGoogle Scholar
  25. Lenz M, Barrett R (1982) Neotenic formation in field colonies of Coptotermes lacteus (Froggatt) in Australia, with comments on the roles of neotenics in the genus Coptotermes (Isoptera: Rhinotermitidae). Sociobiology 7:47–59Google Scholar
  26. Liebhold A, Bascompte J (2003) The Allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6:133–140. doi:10.1046/j.1461-0248.2003.00405.x CrossRefGoogle Scholar
  27. Luchetti A, Velonà A, Mueller M, Mantovani B (2013) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae). Insect Soc 60:203–211. doi:10.1007/s00040-013-0284-8 CrossRefGoogle Scholar
  28. Luque GM, Giraud T, Courchamp F (2013) Allee effects in ants. J Anim Ecol 82:956–965. doi:10.1111/1365-2656.12091 CrossRefPubMedGoogle Scholar
  29. Luykx P (1986) Termite colony dynamics as revealed by the sex- and caste-ratios of whole colonies of Incisitermes schwarzi banks (Isoptera: Kalotermitidae). Insect Soc 33:221–248. doi:10.1007/bf02224243 CrossRefGoogle Scholar
  30. Matsuura K (2002) Sociobiology of the termite Reticulitermes speratus. Doctoral thesis, Kyoto University, KyotoGoogle Scholar
  31. Matsuura K (2006) Early emergence of males in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae): protandry as a side effect of sexual size dimorphism. Ann Entomol Soc Am 99:625–628. doi:10.1603/0013-8746(2006)99[625:EEOMIT]2.0.CO;2 CrossRefGoogle Scholar
  32. Matsuura K, Nishida T (2001) Comparison of colony foundation success between sexual pairs and female asexual units in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Popul Ecol 43:119–124. doi:10.1007/pl00012022 CrossRefGoogle Scholar
  33. Matsuura K, Nishida T (2002) Mechanism, induction factors, and adaptive significance of dealation in the subterranean termite Reticulitermes speratus (Isoptera, Rhinotermitidae). Insect Soc 49:241–244. doi:10.1007/s00040-002-8308-9 CrossRefGoogle Scholar
  34. Matsuura K, Fujimoto M, Goka K, Nishida T (2002a) Cooperative colony foundation by termite female pairs: altruism for survivorship in incipient colonies. Anim Behav 64:167–173. doi:10.1006/anbe.2002.3062 CrossRefGoogle Scholar
  35. Matsuura K, Kuno E, Nishida T (2002b) Homosexual tandem running as selfish herd in Reticulitermes speratus: novel antipredatory behavior in termites. J Theor Biol 214:63–70. doi:10.1006/jtbi.2001.2447 CrossRefPubMedGoogle Scholar
  36. Matsuura K, Fujimoto M, Goka K (2004) Sexual and asexual colony foundation and the mechanism of facultative parthenogenesis in the termite Reticulitermes speratus (Isoptera, Rhinotermitidae). Insect Soc 51:325–332. doi:10.1007/s00040-004-0746-0 CrossRefGoogle Scholar
  37. Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687. doi:10.1126/science.1169702 CrossRefPubMedGoogle Scholar
  38. McCarthy M (1997) The Allee effect, finding mates and theoretical models. Ecol Model 103:99–102. doi:10.1016/S0304-3800(97)00104-X CrossRefGoogle Scholar
  39. Mizumoto N, Yashiro T, Matsuura K (2016) Male same-sex pairing as an adaptive strategy for future reproduction in termites. Anim Behav 119:179–187. doi:10.1016/j.anbehav.2016.07.007 CrossRefGoogle Scholar
  40. Møller AP, Legendre S (2001) Allee effect, sexual selection and demographic stochasticity. Oikos 92:27–34. doi:10.1034/j.1600-0706.2001.920104.x CrossRefGoogle Scholar
  41. Nalepa CA, Jones SC (1991) Evolution of monogamy in termites. Biol Rev 66:83–97. doi:10.1111/j.1469-185X.1991.tb01136.x CrossRefGoogle Scholar
  42. Nutting W (1969) Flight and colony foundation. In: Krishna K, Weesner F (eds) Biology of termites. Academic Press, New York, pp 233–282CrossRefGoogle Scholar
  43. Nutting W (1979) Termite flight periods: strategies for predator avoidance? Sociobiology 4:141–151Google Scholar
  44. Perdereau E, Bagnères AG, Vargo EL, Baudouin G, Xu Y, Labadie P, Dupont S, Dedeine F (2015) Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 24:2125–2142. doi:10.1111/mec.13094 CrossRefPubMedGoogle Scholar
  45. Serrano D, Oro D, Ursua E, Tella JL (2005) Colony size selection determines adult survival and dispersal preferences: Allee effects in a colonial bird. Am Nat 166:E22–E31. doi:10.1086/431255 CrossRefPubMedGoogle Scholar
  46. Shellman-Reeve JS (1997) Advantages of biparental care in the wood-dwelling termite, Zootermopsis nevadensis. Anim Behav 54:163–170. doi:10.1006/anbe.1996.0412 CrossRefPubMedGoogle Scholar
  47. Sheppe W (1970) Invertebrate predation on termites of the African savanna. Insect Soc 17:205–218CrossRefGoogle Scholar
  48. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405. doi:10.1016/S0169-5347(99)01684-5 CrossRefPubMedGoogle Scholar
  49. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190. doi:10.2307/3547011 CrossRefGoogle Scholar
  50. Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908. doi:10.1111/j.1461-0248.2005.00787.x CrossRefGoogle Scholar
  51. Thorne B (1983) Alate production and sex ratio in colonies of the Neotropical termite Nasutitermes corniger (Isoptera; Termitidae). Oecologia 58:103–109. doi:10.1007/BF00384548 CrossRefPubMedGoogle Scholar
  52. Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological invasions. Ecol Lett 14:615–624. doi:10.1111/j.1461-0248.2011.01614.x CrossRefPubMedGoogle Scholar
  53. Travis JM, Dytham C (2002) Dispersal evolution during invasions. Evol Ecol Res 4:1119–1129Google Scholar
  54. Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820. doi:10.1046/j.1365-294x.2000.00915.x CrossRefPubMedGoogle Scholar
  55. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403. doi:10.1146/annurev.ento.54.110807.090443 CrossRefPubMedGoogle Scholar
  56. Vargo EL, Labadie PE, Matsuura K (2012) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc Biol Sci 279:813–819. doi:10.1098/rspb.2011.1030 CrossRefPubMedGoogle Scholar
  57. Vieau F (1996) Seasonal variation in caste proportions of the termite Reticulitermes santonensis Feytaud (Isoptera: Rhinotermitidae) in an environment of western France. Ann Soc Ent Fr (NS) 32:207–216Google Scholar
  58. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  59. Wang W, Liu H, Li Z, Guo Z, Yang Y (2011) Invasion dynamics of epidemic with the Allee effect. Biosystems 105:25–33. doi:10.1016/j.biosystems.2011.03.001 CrossRefPubMedGoogle Scholar
  60. Weesner FM (1960) Evolution and biology of the termites. Annu Rev Entomol 5:153–170CrossRefGoogle Scholar
  61. Wynne-Edwards VC (1962) Animal dispersion in relation to social behaviour. Oliver & Boyd, EdinburghGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations