Skip to main content
Log in

A review of impacts of temperature and relative humidity on various activities of honey bees

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The importance of pollination services by honey bees (Apis mellifera L.) and their products is well-known. However, honey bee colonies currently face many challenges. These challenges include both biotic and abiotic factors. In this article, the impacts of abiotic factors (mainly temperature and relative humidity) on honey bee activities are reviewed. The suitable ranges of these two factors and the potential impacts of atypical minimal or maximal limits are presented. Social homeostasis of honey bees, and activities inside and outside the colony that are influenced by these two factors are included, followed by a suggestion of additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Shaara HF (2014) The foraging behaviour of honey bees, Apis mellifera: a review. Vet Med 59:1–10

    Google Scholar 

  • Abou-Shaara HF, Al-Ghamdi AA, Mohamed AA (2012) Tolerance of two honey bee races to various temperature and relative humidity gradients. Env Exp Biol 10:133–138

    Google Scholar 

  • Abou-Shaara HF, Al-Ghamdi AA, Mohamed AA (2013) Honey bee colonies performance enhance by newly modified beehives. J Apic Sci 57:45–57

    Google Scholar 

  • Alattal Y, Alghamdi A (2015) Impact of temperature extremes on survival of indigenous and exotic honey bee subspecies, Apis mellifera, under desert and semiarid climates. Bull Insectol 68:219–222

    Google Scholar 

  • Al-Ghamdi AA, Abou-Shaara HF, Mohamed AA (2014) Hatching rates and some characteristics of Yemeni and Carniolan honey bee eggs. J Entomol Zool Stud 2:06–10

    Google Scholar 

  • Al-Ghamdi AA, Alsharhi MM, Abou-Shaara HF (2016) Current status of beekeeping in the Arabian countries and urgent needs for its development inferred from a socio-economic analysis. Asian J Agr Res 10:87–98

    Google Scholar 

  • Al-Ghzawi A, Zaitoun S (2008) Origin and rearing season of honeybee queens affect some of their physiological and reproductive characteristics. Entomol Res 38:139–148

    Article  Google Scholar 

  • Allen MD (1965) The production of queen cups and queen cells in relation to the general development of honeybee colonies, and its connection with swarming and supersedure. J Apic Res 4:121–141

    Article  Google Scholar 

  • Alqarni AS (2006) Tolerance of summer temperature in imported and indigenous honeybee Apis mellifera L. races in central Saudi Arabia. Saudi J Biol Sci 13:123–127

    Google Scholar 

  • Alqarni AS, Hannan MA, Owayss AA, Engel MS (2011) The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): their natural history and role in beekeeping. ZooKeys 134:83–98

    Article  Google Scholar 

  • Atmowidjojo AH, Wheeler DE, Erickson EH, Cohen AC (1997) Temperature tolerance and water balance in feral and domestic honey bees, Apis mellifera L. Comp Biochem Physiol A 118:1399–1403

    Article  Google Scholar 

  • Aupinel P, Fortini D, Dufour H, Tasei JN, Michaud B, Odoux JF, Delegue MHP (2005) Improvement of artificial feeding in a standard in vitro methods for rearing Apis mellifera larvae. Bull Insectol 58:107–111

    Google Scholar 

  • Blazyte-Cereskiene L, Vaitkeviciene G, Venskutonyte S, Buda V (2010) Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Zemdirb Agric 97:61–70

    Google Scholar 

  • Boes KE (2010) Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insect Soc 57:1–9

    Article  Google Scholar 

  • Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the UK: how important are honeybees? Agri Ecosyst Env 142:137–143

    Article  Google Scholar 

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278–294

    Article  Google Scholar 

  • Brodschneider R, Moosbeckhofer R, Crailsheim K (2010) Surveys as a tool to record winter losses of honey bee colonies: a two-year case study in Austria and South Tyrol. J Apic Res. doi:10.3896/IBRA.1.49.1.04

    Google Scholar 

  • Chuda-Mickiewicz B, Samborski J (2015) The quality of honey bee queens from queen cells incubated at different temperatures. Acta Sci Polon Zootech 14:25–32

    Google Scholar 

  • Cobey SW (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 38:390–410

    Article  Google Scholar 

  • Cobey SW, Tarpy DR, Woyke J (2013) Standard methods for instrumental insemination of Apis mellifera queens. J Apic Res. doi:10.3896/IBRA.1.52.4.09

    Google Scholar 

  • Coelho JR (1991) Heat transfer and body temperature in honey bee (Hymenoptera: Apidae) drones and workers. Env Entomol 20:1627–1635

    Article  Google Scholar 

  • Cook CN, Durzi S, Scheckel KJ, Breed MD (2016) Larvae influence thermoregulatory fanning behavior in honeybees (Apis mellifera L.). Insect Soc. doi:10.1007/s00040-016-0463-5

    Google Scholar 

  • DeGrandi-Hoffman G, Spivak M, Martin JH (1993a) Role of thermoregulation by nestmates on the development time of honey bee (Hymenoptera: Apidae) queens. Ann Entomol Soc Am 86:165–172

    Article  Google Scholar 

  • DeGrandi-Hoffman G, Spivak M, Martin JH (1993b) The influence of temperature on cuticular color of honeybee (Apis mellifera L) queens. Apidologie 24:101–108

    Article  Google Scholar 

  • DeGrandi-Hoffman G, Gilleya D, Hooper J (2007) The influence of season and volatile compounds on the acceptance of introduced European honey bee (Apis mellifera) queens into European and Africanized colonies. Apidologie 38:230–237

    Article  CAS  Google Scholar 

  • Doull KM (1976) The effects of different humidities on the hatching of the eggs of honeybees. Apidologie 7:61–66

    Article  Google Scholar 

  • Dunham WE (1930) Temperature gradient in the egg-laying activities of the queen bee. Ohio J Sci 30:403–410

    Google Scholar 

  • Eban-Rothschild AD, Bloch G (2008) Differences in the sleep architecture of forager and young honeybees (Apis mellifera). J Exp Biol 211:2408–2416

    Article  PubMed  Google Scholar 

  • El-Niweiri MAA, Moritz RFA (2011) Mating in the rain? Climatic variance for polyandry in the honeybee (Apis mellifera jemenitica). Popul Ecol 53:421–427

    Article  Google Scholar 

  • Erdogan Y, Dodologlu A, Emsen B (2009) Some physiological characteristics of honey bee (Apis mellifera L.) housed in heated, fan wooden and insulated beehives. J Anim Vet Adv 8:1516–1519

    Google Scholar 

  • Fahrenholz L, Lamprecht I, Schricker B (1992) Calorimetric investigations of the different bee castes of honey bees, Apis mellifera carnica. J Comp Physiol B 162:119–130

    Article  Google Scholar 

  • Fehler M, Kleinhenz M, Klügl F, Puppe F, Tautz J (2007) Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica). Naturwissenschaften 94:675–680

    Article  CAS  PubMed  Google Scholar 

  • Fewell JH, Winston ML (1996) Regulation of nectar collection in relation to honey storage levels by honey bees, Apis mellifera. Behav Ecol 7:286–291

    Article  Google Scholar 

  • Free JB, Williams IH (1975) Factors determining the rearing and rejection of drones by the honeybee colony. Anim Behav 23:650–675

    Article  Google Scholar 

  • Freitas BM, Sousa RM, Bomfim IGA (2007) Absconding and migratory behaviors of feral Africanized honey bee (Apis mellifera L.) colonies in NE Brazil. Acta Sci Biol Sci 29:381–385

    Google Scholar 

  • Genersch E, Ohe WVD, Kaatz H, Schroeder A, Otten C, Buchler R, Berg S, Ritter W, Muhlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352

    Article  CAS  Google Scholar 

  • Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482

    Article  CAS  Google Scholar 

  • Gontarz A, Bienkowska M, Loc K (2005) Effect of queen caging conditions on insemination results. J Apic Sci 49:5–15

    Google Scholar 

  • Groh C, Tautz J, Rossler W (2004) Synaptic organization in the adult honey-bee brain is influenced by brood-temperature control during pupal development. Proc Nat Aca Sci USA 101:4268–4273

    Article  CAS  Google Scholar 

  • Groh C, Ahrens D, Rossler W (2006) Environment and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens. Brain Behav Evol 68:1–14

    Article  PubMed  Google Scholar 

  • Grozinger CM, Richards J, Mattila HR (2014) From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp.). Apidologie 45:327–346

    Article  CAS  Google Scholar 

  • Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61

    CAS  PubMed  Google Scholar 

  • Heidinger IMM, Meixner MD, Berg S, Büchler R (2014) Observation of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequency identification (RFID): factors influencing the duration and frequency of nuptial flights. Insects 5:513–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrich B (1980) Mechanisms of body-temperature regulation in honeybees, Apis mellifera I. regulation of head temperature. J Exp Biol 85:61–73

    Google Scholar 

  • Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55

    Google Scholar 

  • Heran H (1952) Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z Vergl Physiol 34:179–206

    Article  Google Scholar 

  • Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253

    Article  Google Scholar 

  • Human H, Nicolson SW, Dietemann V (2006) Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 93:397–401

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JAC, Dykes ES (2008) Thermal energy conduction in a honey bee comb due to cell-heating bees. J Theor Biol 250:194–208

    Article  CAS  PubMed  Google Scholar 

  • Jaycox ER (1961) The effects of various foods and temperatures on sexual maturity of the drone honey bee (Apis mellifera). Ann Entomol Soci Am 54:519–523

    Article  Google Scholar 

  • Jhajj HS, VChahal BS, Brar HS (1992) Fabrication of queen trap for Apis mellifera L. and studies on the premating period. Indian Bee J 5:63–67

    Google Scholar 

  • Jones JC, Helliwell P, Beekman M, Maleszka R, Oldroyd BP (2005) The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J Comp Physiol A 191:1121–1129

    Article  Google Scholar 

  • Joshi NC, Joshi PC (2010) Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. N Y Sci J 3:71–76

    Google Scholar 

  • Kaftanoglu O, Linksvayer TA, Page RE (2011) Rearing honey bees, Apis mellifera, in vitro I: effects of sugar concentrations on survival and development. J Insect Sci 11:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol. doi:10.1007/s10886-011-9909-4

    PubMed  Google Scholar 

  • Ken T, Bock F, Fuchs S, Streit S, Brockmann A, Tautz J (2005) Effects of brood temperature on honey bee Apis mellifera wing morphology. Acta Zool Sin 51:768–771

    Google Scholar 

  • Klein BA, Seeley TD (2011) Work or sleep? Honeybee foragers opportunistically nap during the day when forage is not available. Anim Behav 82:77–83

    Article  Google Scholar 

  • Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231

    Article  PubMed  Google Scholar 

  • Kohno K, Sokabe T, Tominaga M, Kadowaki T (2010) Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J Neurosci 30:12219–12229

    Article  CAS  PubMed  Google Scholar 

  • Koo J, Son T-G, Kim S-Y, Lee K-Y (2015) Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. J Asia Pac Entomol 18:583–589

    Article  CAS  Google Scholar 

  • Kovac H, Stabentheiner A, Brodschneider R (2009) Contribution of honeybee drones of different age to colonial thermoregulation. Apidologie 40:82–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovac H, Käfer H, Stabentheiner A, Costa C (2014) Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie. doi:10.1007/s13592-014-0284-3

    PubMed  PubMed Central  Google Scholar 

  • Lacher VZ (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.). Z Vergl Physiol 48:587–623

    Article  Google Scholar 

  • Lensky Y, Demter M (1985) Mating flights of the queen honey bee (Apis mellifera) in a subtropical climate. Comp Bioch Physiol A 81:229–241

    Article  Google Scholar 

  • Lensky Y, Seifert H (1980) The effect of volume, ventilation and overheating of bee colonies on the construction of swarming queen cups and cells. Comp Biochem Physiol 67:97–101

    Article  Google Scholar 

  • Li Z, Huang ZY, Sharma DB, Xue Y, Wang Z, Ren B (2016) Drone and worker brood microclimates are regulated differentially in honey bees, Apis mellifera. PLoS One 11:e0148740. doi:10.1371/journal.pone.0148740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin H, Winston ML (1998) The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). Can Entomol 130:883–891

    Article  Google Scholar 

  • Moore D, Rankin MA (1993) Light and temperature entrainment of a locomotor rhythm in honeybees. Physiol Entomol 18:271–278

    Article  Google Scholar 

  • Moritz RFA, Kühnert M (1984) Seasonal effects of artificial insemination of honey bee queens (Apis mellifera L.). Apidologie 15:223–231

    Article  Google Scholar 

  • Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees, Apis mellifera. Comp Biochem Physiol 55:169–171

    Article  CAS  Google Scholar 

  • Neupane KR, Thapa RB (2005) Pollen collection and brood production by honeybees (Apis mellifera L.) under Chitwan condition of Nepal. J Inst Agric Anim Sci 26:143–148

    Google Scholar 

  • Neves EF, Faita MR, Gaia LdO, Júnior VVA, Antonialli-Junior WF (2011) Influence of climate factors on flight activity of drones of Apis mellifera (Hymenoptera: Apidae). Sociobiol 57:107–113

    Google Scholar 

  • Nguyen BK, Mignon J, Laget D, De Graaf D, Jacobs FJ, vanEngelsdorp D, Brostaux Y, Saegerman C, Haubruge E (2010) Honey bee colony losses in Belgium during the 2008–9 winter. J Apic Res 49:337–339

    Article  Google Scholar 

  • Nicolson SW (2009) Water homeostasis in bees, with the emphasis on sociality. J Exp Biol 212:429–434

    Article  PubMed  Google Scholar 

  • Ohashi M, Okada R, Kimura T, Ikeno H (2009) Observation system for the control of the hive environment by the honeybee (Apis mellifera). Behav Res Methods 41:782–786

    Article  PubMed  Google Scholar 

  • Omran NSM (2011) Wintering of honeybee colonies (Apis mellifera L.) by using a new technique during winter season in Sohag region, Egypt. J Appl Sci Res 7:174–182

    Google Scholar 

  • Petz M, Stabentheiner A, Crailsheim K (2004) Respiration of individual honeybee larvae in relation to age and ambient temperature. J Comp Physiol B 174:511–518

    PubMed  Google Scholar 

  • Remolina SC, Hafez DM, Robinson GE, Hughes KA (2007) Senescence in the worker honey bee Apis mellifera. J Insect Physiol 53:1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes JW, Harden S, Spooner-Hart R, Anderson DL, Wheen G (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42(1):29–38

    Article  Google Scholar 

  • Roberts SP, Harrison JF (1999) Mechanisms of thermal stability during flight in the honeybee, Apis mellifera. J Exp Biol 202:1523–1533

    PubMed  Google Scholar 

  • Schmaranzer S (2000) Thermoregulation of water collecting honey bees (Apis mellifera). J Insect Physiol 46:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Schneider SS (1990) Nest characteristics and recruitment behavior of absconding colonies of the African honey bee, Apis mellifera scutellata, in Africa. J Insect Behav 3:225–240

    Article  Google Scholar 

  • Seeley TD, Visscher PK (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol Entomol 10:81–88

    Article  Google Scholar 

  • Seeley TD, Kleinhenz M, Bujok B, Tautz J (2003) Thorough warm-up before take-off in honey bee swarms. Naturwissenschaften 90:256–260

    Article  CAS  PubMed  Google Scholar 

  • Severson DW, Erickson EH, Williamson JL, Aiken JM (1990) Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 46:737–739

    Article  CAS  PubMed  Google Scholar 

  • Silva IC, Message D, Cruz CD, Campos LAO, Sousa-Majer MJ (2009) Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions. Gene Mol Res 8:623–629

    Article  CAS  Google Scholar 

  • Simpson J, Riedel BM (1963) The factor that causes swarming by honeybee colonies in small hives. J Apic Res 2:50–54

    Article  Google Scholar 

  • Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37:395–399

    Article  Google Scholar 

  • Southwick EE, Moritz RFA (1987) Social control of air ventilation in colonies of honey bees, Apis mellifera. J Insect Physiol 33:623–626

    Article  Google Scholar 

  • Spleen AM, Lengerich EJ, Rennich K, Caron D, Rose R, Pettis JS, Henson M, Wilkes JT, Wilson M, Stitzinger J, Lee K, Andree M, Snyder R, vanEngelsdorp D (2013) A national survey of managed honey bee 2011–12 winter colony losses in the United States: results from the Bee Informed Partnership. J Apic Res 52:44–53

    Article  Google Scholar 

  • Stabentheiner A, Kovac H (2014) Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges. PLoS One 9(8):e105432. doi:10.1371/journal.pone.0105432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stabentheiner A, Kovac H (2016) Honeybee economics: optimization of foraging in a variable world. Sci Rep 6:28339. doi:10.1038/srep28339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabentheiner A, Kovac H, Hagmiiller K (1995) Thermal behavior of round and wagtail dancing honeybees. J Comp Physiol B 165:433–444

    Article  Google Scholar 

  • Stabentheiner A, Kovac H, Brodschneider R (2010) Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One 5(1):e8967. doi:10.1371/journal.pone.0008967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Starks PT, Gilley DC (1999) Heat shielding: a novel method of colonial thermoregulation in honey bees. Naturwissenschaften 86:438–440

    Article  CAS  PubMed  Google Scholar 

  • Szopek M, Schmickl T, Thenius R, Radspieler G, Crailsheim K (2013) Dynamics of collective decision making of honeybees in complex temperature fields. PLoS One 8(10):e76250. doi:10.1371/journal.pone.0076250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan K, Yang S, Wang Z, Radloff SE, Oldroyd BP (2012) Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie 43:618–623

    Article  Google Scholar 

  • Tautz J, Maier S, Groh C, Roessler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Nat Acad Sci USA 100:7343–7347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibor SI, Mills PF, Heikel DT (1987) Effects of honeybee queen weight and air temperature on the initiation of oviposition. J Apic Res 26:73–78

    Article  Google Scholar 

  • vanEngelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the US, fall to spring 2008. PLoS One 3:e4071. doi:10.1371/journal.pone.0004071

    Article  PubMed Central  CAS  Google Scholar 

  • Visscher PK, Dukas R (1997) Survivorship of foraging honey bees. Insect Soc 44:1–5

    Article  Google Scholar 

  • Woods WA Jr, Heinrich B, Stevenson RD (2005) Honeybee flight metabolic rate: does it depend upon air temperature? J Exp Biol 208:1161–1173

    Article  PubMed  Google Scholar 

  • Woyke J, Jasinski Z (1990) Effect of the number of attendant worker bees on the initiation of egg laying by instrumentally inseminated queens kept in small nuclei. J Apic Res 29:101–106

    Article  Google Scholar 

  • Woyke J, Wilde J, Wilde M (2003) Flight activity reaction to temperature changes in Apis dorsata, Apis laboriosa and Apis mellifera. J Apic Sci 47:73–80

    Google Scholar 

  • Yokohari F (1983) The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res 233:355–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the efforts and time of Prof. Dr. Boris Kondratieff (Colorado State University, USA) in reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Abou-Shaara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Shaara, H.F., Owayss, A.A., Ibrahim, Y.Y. et al. A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc. 64, 455–463 (2017). https://doi.org/10.1007/s00040-017-0573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-017-0573-8

Keywords

Navigation