Insectes Sociaux

, Volume 64, Issue 4, pp 455–463 | Cite as

A review of impacts of temperature and relative humidity on various activities of honey bees

  • H. F. Abou-Shaara
  • A. A. Owayss
  • Y. Y. Ibrahim
  • N. K. Basuny
Review Article


The importance of pollination services by honey bees (Apis mellifera L.) and their products is well-known. However, honey bee colonies currently face many challenges. These challenges include both biotic and abiotic factors. In this article, the impacts of abiotic factors (mainly temperature and relative humidity) on honey bee activities are reviewed. The suitable ranges of these two factors and the potential impacts of atypical minimal or maximal limits are presented. Social homeostasis of honey bees, and activities inside and outside the colony that are influenced by these two factors are included, followed by a suggestion of additional studies.


Honey bees Activities Temperature Humidity Thermoregulation 



We appreciate the efforts and time of Prof. Dr. Boris Kondratieff (Colorado State University, USA) in reading the manuscript.


  1. Abou-Shaara HF (2014) The foraging behaviour of honey bees, Apis mellifera: a review. Vet Med 59:1–10Google Scholar
  2. Abou-Shaara HF, Al-Ghamdi AA, Mohamed AA (2012) Tolerance of two honey bee races to various temperature and relative humidity gradients. Env Exp Biol 10:133–138Google Scholar
  3. Abou-Shaara HF, Al-Ghamdi AA, Mohamed AA (2013) Honey bee colonies performance enhance by newly modified beehives. J Apic Sci 57:45–57Google Scholar
  4. Alattal Y, Alghamdi A (2015) Impact of temperature extremes on survival of indigenous and exotic honey bee subspecies, Apis mellifera, under desert and semiarid climates. Bull Insectol 68:219–222Google Scholar
  5. Al-Ghamdi AA, Abou-Shaara HF, Mohamed AA (2014) Hatching rates and some characteristics of Yemeni and Carniolan honey bee eggs. J Entomol Zool Stud 2:06–10Google Scholar
  6. Al-Ghamdi AA, Alsharhi MM, Abou-Shaara HF (2016) Current status of beekeeping in the Arabian countries and urgent needs for its development inferred from a socio-economic analysis. Asian J Agr Res 10:87–98Google Scholar
  7. Al-Ghzawi A, Zaitoun S (2008) Origin and rearing season of honeybee queens affect some of their physiological and reproductive characteristics. Entomol Res 38:139–148CrossRefGoogle Scholar
  8. Allen MD (1965) The production of queen cups and queen cells in relation to the general development of honeybee colonies, and its connection with swarming and supersedure. J Apic Res 4:121–141CrossRefGoogle Scholar
  9. Alqarni AS (2006) Tolerance of summer temperature in imported and indigenous honeybee Apis mellifera L. races in central Saudi Arabia. Saudi J Biol Sci 13:123–127Google Scholar
  10. Alqarni AS, Hannan MA, Owayss AA, Engel MS (2011) The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): their natural history and role in beekeeping. ZooKeys 134:83–98CrossRefGoogle Scholar
  11. Atmowidjojo AH, Wheeler DE, Erickson EH, Cohen AC (1997) Temperature tolerance and water balance in feral and domestic honey bees, Apis mellifera L. Comp Biochem Physiol A 118:1399–1403CrossRefGoogle Scholar
  12. Aupinel P, Fortini D, Dufour H, Tasei JN, Michaud B, Odoux JF, Delegue MHP (2005) Improvement of artificial feeding in a standard in vitro methods for rearing Apis mellifera larvae. Bull Insectol 58:107–111Google Scholar
  13. Blazyte-Cereskiene L, Vaitkeviciene G, Venskutonyte S, Buda V (2010) Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Zemdirb Agric 97:61–70Google Scholar
  14. Boes KE (2010) Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insect Soc 57:1–9CrossRefGoogle Scholar
  15. Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the UK: how important are honeybees? Agri Ecosyst Env 142:137–143CrossRefGoogle Scholar
  16. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278–294CrossRefGoogle Scholar
  17. Brodschneider R, Moosbeckhofer R, Crailsheim K (2010) Surveys as a tool to record winter losses of honey bee colonies: a two-year case study in Austria and South Tyrol. J Apic Res. doi: 10.3896/IBRA. Google Scholar
  18. Chuda-Mickiewicz B, Samborski J (2015) The quality of honey bee queens from queen cells incubated at different temperatures. Acta Sci Polon Zootech 14:25–32Google Scholar
  19. Cobey SW (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 38:390–410CrossRefGoogle Scholar
  20. Cobey SW, Tarpy DR, Woyke J (2013) Standard methods for instrumental insemination of Apis mellifera queens. J Apic Res. doi: 10.3896/IBRA. Google Scholar
  21. Coelho JR (1991) Heat transfer and body temperature in honey bee (Hymenoptera: Apidae) drones and workers. Env Entomol 20:1627–1635CrossRefGoogle Scholar
  22. Cook CN, Durzi S, Scheckel KJ, Breed MD (2016) Larvae influence thermoregulatory fanning behavior in honeybees (Apis mellifera L.). Insect Soc. doi: 10.1007/s00040-016-0463-5 Google Scholar
  23. DeGrandi-Hoffman G, Spivak M, Martin JH (1993a) Role of thermoregulation by nestmates on the development time of honey bee (Hymenoptera: Apidae) queens. Ann Entomol Soc Am 86:165–172CrossRefGoogle Scholar
  24. DeGrandi-Hoffman G, Spivak M, Martin JH (1993b) The influence of temperature on cuticular color of honeybee (Apis mellifera L) queens. Apidologie 24:101–108CrossRefGoogle Scholar
  25. DeGrandi-Hoffman G, Gilleya D, Hooper J (2007) The influence of season and volatile compounds on the acceptance of introduced European honey bee (Apis mellifera) queens into European and Africanized colonies. Apidologie 38:230–237CrossRefGoogle Scholar
  26. Doull KM (1976) The effects of different humidities on the hatching of the eggs of honeybees. Apidologie 7:61–66CrossRefGoogle Scholar
  27. Dunham WE (1930) Temperature gradient in the egg-laying activities of the queen bee. Ohio J Sci 30:403–410Google Scholar
  28. Eban-Rothschild AD, Bloch G (2008) Differences in the sleep architecture of forager and young honeybees (Apis mellifera). J Exp Biol 211:2408–2416PubMedCrossRefGoogle Scholar
  29. El-Niweiri MAA, Moritz RFA (2011) Mating in the rain? Climatic variance for polyandry in the honeybee (Apis mellifera jemenitica). Popul Ecol 53:421–427CrossRefGoogle Scholar
  30. Erdogan Y, Dodologlu A, Emsen B (2009) Some physiological characteristics of honey bee (Apis mellifera L.) housed in heated, fan wooden and insulated beehives. J Anim Vet Adv 8:1516–1519Google Scholar
  31. Fahrenholz L, Lamprecht I, Schricker B (1992) Calorimetric investigations of the different bee castes of honey bees, Apis mellifera carnica. J Comp Physiol B 162:119–130CrossRefGoogle Scholar
  32. Fehler M, Kleinhenz M, Klügl F, Puppe F, Tautz J (2007) Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica). Naturwissenschaften 94:675–680PubMedCrossRefGoogle Scholar
  33. Fewell JH, Winston ML (1996) Regulation of nectar collection in relation to honey storage levels by honey bees, Apis mellifera. Behav Ecol 7:286–291CrossRefGoogle Scholar
  34. Free JB, Williams IH (1975) Factors determining the rearing and rejection of drones by the honeybee colony. Anim Behav 23:650–675CrossRefGoogle Scholar
  35. Freitas BM, Sousa RM, Bomfim IGA (2007) Absconding and migratory behaviors of feral Africanized honey bee (Apis mellifera L.) colonies in NE Brazil. Acta Sci Biol Sci 29:381–385Google Scholar
  36. Genersch E, Ohe WVD, Kaatz H, Schroeder A, Otten C, Buchler R, Berg S, Ritter W, Muhlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352CrossRefGoogle Scholar
  37. Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482CrossRefGoogle Scholar
  38. Gontarz A, Bienkowska M, Loc K (2005) Effect of queen caging conditions on insemination results. J Apic Sci 49:5–15Google Scholar
  39. Groh C, Tautz J, Rossler W (2004) Synaptic organization in the adult honey-bee brain is influenced by brood-temperature control during pupal development. Proc Nat Aca Sci USA 101:4268–4273CrossRefGoogle Scholar
  40. Groh C, Ahrens D, Rossler W (2006) Environment and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens. Brain Behav Evol 68:1–14PubMedCrossRefGoogle Scholar
  41. Grozinger CM, Richards J, Mattila HR (2014) From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp.). Apidologie 45:327–346CrossRefGoogle Scholar
  42. Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61PubMedGoogle Scholar
  43. Heidinger IMM, Meixner MD, Berg S, Büchler R (2014) Observation of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequency identification (RFID): factors influencing the duration and frequency of nuptial flights. Insects 5:513–527PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heinrich B (1980) Mechanisms of body-temperature regulation in honeybees, Apis mellifera I. regulation of head temperature. J Exp Biol 85:61–73Google Scholar
  45. Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55Google Scholar
  46. Heran H (1952) Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z Vergl Physiol 34:179–206CrossRefGoogle Scholar
  47. Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253CrossRefGoogle Scholar
  48. Human H, Nicolson SW, Dietemann V (2006) Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 93:397–401PubMedCrossRefGoogle Scholar
  49. Humphrey JAC, Dykes ES (2008) Thermal energy conduction in a honey bee comb due to cell-heating bees. J Theor Biol 250:194–208PubMedCrossRefGoogle Scholar
  50. Jaycox ER (1961) The effects of various foods and temperatures on sexual maturity of the drone honey bee (Apis mellifera). Ann Entomol Soci Am 54:519–523CrossRefGoogle Scholar
  51. Jhajj HS, VChahal BS, Brar HS (1992) Fabrication of queen trap for Apis mellifera L. and studies on the premating period. Indian Bee J 5:63–67Google Scholar
  52. Jones JC, Helliwell P, Beekman M, Maleszka R, Oldroyd BP (2005) The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J Comp Physiol A 191:1121–1129CrossRefGoogle Scholar
  53. Joshi NC, Joshi PC (2010) Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. N Y Sci J 3:71–76Google Scholar
  54. Kaftanoglu O, Linksvayer TA, Page RE (2011) Rearing honey bees, Apis mellifera, in vitro I: effects of sugar concentrations on survival and development. J Insect Sci 11:96PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol. doi: 10.1007/s10886-011-9909-4 PubMedGoogle Scholar
  56. Ken T, Bock F, Fuchs S, Streit S, Brockmann A, Tautz J (2005) Effects of brood temperature on honey bee Apis mellifera wing morphology. Acta Zool Sin 51:768–771Google Scholar
  57. Klein BA, Seeley TD (2011) Work or sleep? Honeybee foragers opportunistically nap during the day when forage is not available. Anim Behav 82:77–83CrossRefGoogle Scholar
  58. Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231PubMedCrossRefGoogle Scholar
  59. Kohno K, Sokabe T, Tominaga M, Kadowaki T (2010) Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J Neurosci 30:12219–12229PubMedCrossRefGoogle Scholar
  60. Koo J, Son T-G, Kim S-Y, Lee K-Y (2015) Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. J Asia Pac Entomol 18:583–589CrossRefGoogle Scholar
  61. Kovac H, Stabentheiner A, Brodschneider R (2009) Contribution of honeybee drones of different age to colonial thermoregulation. Apidologie 40:82–95PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kovac H, Käfer H, Stabentheiner A, Costa C (2014) Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie. doi: 10.1007/s13592-014-0284-3 PubMedPubMedCentralGoogle Scholar
  63. Lacher VZ (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.). Z Vergl Physiol 48:587–623CrossRefGoogle Scholar
  64. Lensky Y, Demter M (1985) Mating flights of the queen honey bee (Apis mellifera) in a subtropical climate. Comp Bioch Physiol A 81:229–241CrossRefGoogle Scholar
  65. Lensky Y, Seifert H (1980) The effect of volume, ventilation and overheating of bee colonies on the construction of swarming queen cups and cells. Comp Biochem Physiol 67:97–101CrossRefGoogle Scholar
  66. Li Z, Huang ZY, Sharma DB, Xue Y, Wang Z, Ren B (2016) Drone and worker brood microclimates are regulated differentially in honey bees, Apis mellifera. PLoS One 11:e0148740. doi: 10.1371/journal.pone.0148740 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lin H, Winston ML (1998) The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). Can Entomol 130:883–891CrossRefGoogle Scholar
  68. Moore D, Rankin MA (1993) Light and temperature entrainment of a locomotor rhythm in honeybees. Physiol Entomol 18:271–278CrossRefGoogle Scholar
  69. Moritz RFA, Kühnert M (1984) Seasonal effects of artificial insemination of honey bee queens (Apis mellifera L.). Apidologie 15:223–231CrossRefGoogle Scholar
  70. Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees, Apis mellifera. Comp Biochem Physiol 55:169–171CrossRefGoogle Scholar
  71. Neupane KR, Thapa RB (2005) Pollen collection and brood production by honeybees (Apis mellifera L.) under Chitwan condition of Nepal. J Inst Agric Anim Sci 26:143–148Google Scholar
  72. Neves EF, Faita MR, Gaia LdO, Júnior VVA, Antonialli-Junior WF (2011) Influence of climate factors on flight activity of drones of Apis mellifera (Hymenoptera: Apidae). Sociobiol 57:107–113Google Scholar
  73. Nguyen BK, Mignon J, Laget D, De Graaf D, Jacobs FJ, vanEngelsdorp D, Brostaux Y, Saegerman C, Haubruge E (2010) Honey bee colony losses in Belgium during the 2008–9 winter. J Apic Res 49:337–339CrossRefGoogle Scholar
  74. Nicolson SW (2009) Water homeostasis in bees, with the emphasis on sociality. J Exp Biol 212:429–434PubMedCrossRefGoogle Scholar
  75. Ohashi M, Okada R, Kimura T, Ikeno H (2009) Observation system for the control of the hive environment by the honeybee (Apis mellifera). Behav Res Methods 41:782–786PubMedCrossRefGoogle Scholar
  76. Omran NSM (2011) Wintering of honeybee colonies (Apis mellifera L.) by using a new technique during winter season in Sohag region, Egypt. J Appl Sci Res 7:174–182Google Scholar
  77. Petz M, Stabentheiner A, Crailsheim K (2004) Respiration of individual honeybee larvae in relation to age and ambient temperature. J Comp Physiol B 174:511–518PubMedGoogle Scholar
  78. Remolina SC, Hafez DM, Robinson GE, Hughes KA (2007) Senescence in the worker honey bee Apis mellifera. J Insect Physiol 53:1027–1033PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rhodes JW, Harden S, Spooner-Hart R, Anderson DL, Wheen G (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42(1):29–38CrossRefGoogle Scholar
  80. Roberts SP, Harrison JF (1999) Mechanisms of thermal stability during flight in the honeybee, Apis mellifera. J Exp Biol 202:1523–1533PubMedGoogle Scholar
  81. Schmaranzer S (2000) Thermoregulation of water collecting honey bees (Apis mellifera). J Insect Physiol 46:1187–1194PubMedCrossRefGoogle Scholar
  82. Schneider SS (1990) Nest characteristics and recruitment behavior of absconding colonies of the African honey bee, Apis mellifera scutellata, in Africa. J Insect Behav 3:225–240CrossRefGoogle Scholar
  83. Seeley TD, Visscher PK (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol Entomol 10:81–88CrossRefGoogle Scholar
  84. Seeley TD, Kleinhenz M, Bujok B, Tautz J (2003) Thorough warm-up before take-off in honey bee swarms. Naturwissenschaften 90:256–260PubMedCrossRefGoogle Scholar
  85. Severson DW, Erickson EH, Williamson JL, Aiken JM (1990) Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 46:737–739PubMedCrossRefGoogle Scholar
  86. Silva IC, Message D, Cruz CD, Campos LAO, Sousa-Majer MJ (2009) Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions. Gene Mol Res 8:623–629CrossRefGoogle Scholar
  87. Simpson J, Riedel BM (1963) The factor that causes swarming by honeybee colonies in small hives. J Apic Res 2:50–54CrossRefGoogle Scholar
  88. Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37:395–399CrossRefGoogle Scholar
  89. Southwick EE, Moritz RFA (1987) Social control of air ventilation in colonies of honey bees, Apis mellifera. J Insect Physiol 33:623–626CrossRefGoogle Scholar
  90. Spleen AM, Lengerich EJ, Rennich K, Caron D, Rose R, Pettis JS, Henson M, Wilkes JT, Wilson M, Stitzinger J, Lee K, Andree M, Snyder R, vanEngelsdorp D (2013) A national survey of managed honey bee 2011–12 winter colony losses in the United States: results from the Bee Informed Partnership. J Apic Res 52:44–53CrossRefGoogle Scholar
  91. Stabentheiner A, Kovac H (2014) Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges. PLoS One 9(8):e105432. doi: 10.1371/journal.pone.0105432 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Stabentheiner A, Kovac H (2016) Honeybee economics: optimization of foraging in a variable world. Sci Rep 6:28339. doi: 10.1038/srep28339 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stabentheiner A, Kovac H, Hagmiiller K (1995) Thermal behavior of round and wagtail dancing honeybees. J Comp Physiol B 165:433–444CrossRefGoogle Scholar
  94. Stabentheiner A, Kovac H, Brodschneider R (2010) Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One 5(1):e8967. doi: 10.1371/journal.pone.0008967 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Starks PT, Gilley DC (1999) Heat shielding: a novel method of colonial thermoregulation in honey bees. Naturwissenschaften 86:438–440PubMedCrossRefGoogle Scholar
  96. Szopek M, Schmickl T, Thenius R, Radspieler G, Crailsheim K (2013) Dynamics of collective decision making of honeybees in complex temperature fields. PLoS One 8(10):e76250. doi: 10.1371/journal.pone.0076250 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tan K, Yang S, Wang Z, Radloff SE, Oldroyd BP (2012) Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie 43:618–623CrossRefGoogle Scholar
  98. Tautz J, Maier S, Groh C, Roessler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Nat Acad Sci USA 100:7343–7347PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tibor SI, Mills PF, Heikel DT (1987) Effects of honeybee queen weight and air temperature on the initiation of oviposition. J Apic Res 26:73–78CrossRefGoogle Scholar
  100. vanEngelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the US, fall to spring 2008. PLoS One 3:e4071. doi: 10.1371/journal.pone.0004071 PubMedCentralCrossRefGoogle Scholar
  101. Visscher PK, Dukas R (1997) Survivorship of foraging honey bees. Insect Soc 44:1–5CrossRefGoogle Scholar
  102. Woods WA Jr, Heinrich B, Stevenson RD (2005) Honeybee flight metabolic rate: does it depend upon air temperature? J Exp Biol 208:1161–1173PubMedCrossRefGoogle Scholar
  103. Woyke J, Jasinski Z (1990) Effect of the number of attendant worker bees on the initiation of egg laying by instrumentally inseminated queens kept in small nuclei. J Apic Res 29:101–106CrossRefGoogle Scholar
  104. Woyke J, Wilde J, Wilde M (2003) Flight activity reaction to temperature changes in Apis dorsata, Apis laboriosa and Apis mellifera. J Apic Sci 47:73–80Google Scholar
  105. Yokohari F (1983) The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res 233:355–365PubMedCrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  • H. F. Abou-Shaara
    • 1
  • A. A. Owayss
    • 2
    • 5
  • Y. Y. Ibrahim
    • 3
  • N. K. Basuny
    • 4
  1. 1.Department of Plant Protection, Faculty of AgricultureDamanhour UniversityDamanhourEgypt
  2. 2.Department of Plant Protection, Faculty of AgricultureFayoum UniversityAl FayoumEgypt
  3. 3.Department of Economic Entomology and Pesticides, Faculty of AgricultureCairo UniversityGizaEgypt
  4. 4.Beekeeping Research Department, Plant Protection Research InstituteAgricultural Research CenterGizaEgypt
  5. 5.Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations