Insectes Sociaux

, Volume 64, Issue 4, pp 485–494 | Cite as

Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina

  • A. C. Scannapieco
  • M. C. Mannino
  • G. Soto
  • M. A. Palacio
  • J. L. Cladera
  • S. B. Lanzavecchia
Research Article


Hygienic behavior is an economically beneficial, heritable trait, which has evolved to limit the impact of honeybee pathogens. Selecting and breeding colonies with high levels of hygienic behavior has become a feasible and environmentally friendly strategy to control brood diseases in honeybee colonies worldwide. The identification of genes involved in the expression of this character may not only unravel molecular and biochemical pathways underlying hygienic behavior, but also serve as a practical approach to select disease resistance biomarkers useful for honeybee breeding programs. In the present work, we evaluated, at genetic level, Apis mellifera stocks selected for hygienic behavior, widely used for commercial apiculture in Argentina. We analyzed the expression profiles of five genes previously identified as candidates associated with hygienic behavior both in QTL and global gene expression studies in honeybees, more precisely, involved in perception and processing of olfactory information. We validated the differential expression of these genes as potentially responsible for behavioral differences in our selected stocks. Our results indicate that four of them (octopamine receptor, smell-impaired, odorant-binding protein 3, and odorant-binding protein 4) were differentially expressed between hygienic and non-hygienic bees within our highly hygienic colonies. The present findings improve our understanding of the molecular mechanisms underlying the differentiation of middle-age worker bees in their genetic propensity to perform hygienic behavior. This progress towards the genetic characterization of highly hygienic colonies that are commercially used in Argentine apiculture lays the groundwork for future development of targets for marker-assisted selection of disease-resistant honeybee stocks.


Honeybee Social immunity Candidate genes Olfactory cues Breeding programs 



We are grateful to Marla Spivak (Department of Entomology, University of Minnesota, USA) for her valuable comments on the manuscript and Analía Martinez (Unidad Integrada INTA Balcarce, FCA-Universidad de Mar del Plata, Buenos Aires Argentina) for helping at various stages of the experiments and for her technical support with hygienic breeding material. This research was supported by the National Agency for Promotion Science and Technology (ANPCyT, through PICT 0133-2011 Project) to ACS and by the National Apicultural Program—National Institute of Agricultural Technology (INTA) to MAP and SBL.


  1. Arathi HS, Spivak M (2001) Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Anim Behav 62:57–66CrossRefGoogle Scholar
  2. Arathi HS, Burns I, Spivak M (2000) Ethology of hygienic behaviour in the honey bee Apis mellifera L. (Hymenoptera: Apidae): behavioural repertoire of hygienic bees. Ethology 106:365–379CrossRefGoogle Scholar
  3. Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440CrossRefPubMedGoogle Scholar
  4. Boecking O, Drescher W (1992) The removal response of Apis mellifera L. colonies to brood in wax and plastic cells after experimental and natural infestation with Varroa jacobsoni Oud. and to freeze-killed brood. Exp Appl Acarol 16:321–329CrossRefGoogle Scholar
  5. Bonabeau E, Theraulaz G, Deneubourg JL (1998) Fixed response thresholds and the regulation of division of labour in insect societies. Bull Math Biol 60:753–807CrossRefGoogle Scholar
  6. Boutin S, Alburaki M, Mercier PL, Giovenazzo P, Derome N (2015) Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genom 16:500CrossRefGoogle Scholar
  7. Büchler R, Berg S, Le Conte Y (2010) Breeding for resistance to Varroa destructor in Europe. Apidologie 41:393–408CrossRefGoogle Scholar
  8. Chakroborty NK, Bienefeld K, Menzel R (2015) Odor learning and odor discrimination of bees selected for enhanced hygienic behavior. Apidologie 46:499–514CrossRefGoogle Scholar
  9. Dallacqua RP, Simões ZLP, Bitondi MMG (2007) Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insect Soc 54:70–76CrossRefGoogle Scholar
  10. Danka RG, Harris JW, Villa JD, Dodds GE (2013) Varying congruence of hygienic responses to Varroa destructor and freeze-killed brood among different types of honeybees. Apidologie 44:447–457CrossRefGoogle Scholar
  11. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  12. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380PubMedGoogle Scholar
  13. Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LE, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104CrossRefPubMedGoogle Scholar
  14. Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gilliam M, Taber S III, Richardson GV (1983) Hygienic behavior of honeybees en relation to chalkbrood disease. Apidologie 14:29–39CrossRefGoogle Scholar
  16. Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86:725–735CrossRefPubMedGoogle Scholar
  17. Gramacho KP, Spivak M (2003) Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behav Ecol Sociobiol 54:472–479CrossRefGoogle Scholar
  18. Guarna MM, Melathopoulos AP, Huxter E, Iovinella I, Parker R, Stoynov N, Tam A, Moon KM, Chan QWT, Pelosi P, White R, Pernal S, Foster LJ (2015) A search for protein biomarkers links olfactory signal transduction to social immunity. BMC Genom 16:63CrossRefGoogle Scholar
  19. Harbo JR, Harris JW (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J Econ Entomol 92:261–265CrossRefGoogle Scholar
  20. Harbo JR, Harris JW (2005) Suppressed mite reproduction explained by the behaviour of adult bees. J Apic Res 44:21–23CrossRefGoogle Scholar
  21. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hunt GJ (2007) Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol 53:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ji T, Yin L, Liu Z, Shen F, Shen J (2014) High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana. Genet Mol Res 13:9086–9096CrossRefPubMedGoogle Scholar
  24. Jiang S, Robertson T, Mostajeran M, Robertson AJ, Qiu X (2016) Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing Varroa tolerance and susceptibility. Insect Mol Biol 25:272–282CrossRefPubMedGoogle Scholar
  25. Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568PubMedGoogle Scholar
  26. Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408CrossRefPubMedGoogle Scholar
  27. Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AF (2016) Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp Gerontol 77:52–61CrossRefPubMedGoogle Scholar
  28. Lourenço AP, Mackert A, Dos Santos Cristino A, Simões ZLP (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372–385CrossRefGoogle Scholar
  29. Masterman R, Smith BH, Spivak M (2000) Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. J Insect Behav 13:87–101CrossRefGoogle Scholar
  30. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340CrossRefGoogle Scholar
  31. Mercer A, Menzel R (1982) The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J Comp Physiol A 145:363–368CrossRefGoogle Scholar
  32. Momot JP, Rothenbuhler WC (1971) Behaviour genetics of nest cleaning in honeybees. VI. Interactions of age and genotype of bees, and nectar flow. J Apic Res 10:11–21CrossRefGoogle Scholar
  33. Mondet F, Alaux C, Severac D, Rohmer M, Mercer AR, Le Conte Y (2015) Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci Rep 5:10454CrossRefPubMedPubMedCentralGoogle Scholar
  34. Moritz R (1988) Selection of group characters in honey bees (Apis mellifera). In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 118–124Google Scholar
  35. Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE, Evans JD, Cros-Arteil S, Crauser D, Le Conte Y (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genom 9:301CrossRefGoogle Scholar
  36. Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432CrossRefPubMedGoogle Scholar
  37. Nazzi F, DellaVedova G, D’Agaro M (2004) A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35:65–70CrossRefGoogle Scholar
  38. Newton DC, Ostasiewski NJA (1986) A simplified bioassay for behavioral resistance to American Foulbrood in honey bees (Apis mellifera L). Am Bee J 126:278–281Google Scholar
  39. Oldroyd BP, Thompson GJ (2007) Behavioural genetics of the honey bee Apis mellifera. In: Simpson SJ (ed) Advances in insect physiology, vol. 33. Elsevier, Amsterdam, pp 1–49Google Scholar
  40. Oxley P, Spivak M, Oldroyd BP (2010) Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol Ecol 19:1453–1461CrossRefGoogle Scholar
  41. Palacio MA, Figini EE, Ruffinengo SR, Rodriguez EM, Del Hoyo ML, Bedascarrasbure EL (2000) Changes in a population of Apis mellifera L. selected for hygienic behaviour and its relation to brood disease tolerance. Apidologie 31:471–478CrossRefGoogle Scholar
  42. Palacio MA, Rodriguez EM, Goncalves L, Bedascarrasbure EL, Spivak M (2010) Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis. Apidologie 41:602–612CrossRefGoogle Scholar
  43. Parker R, Guarna MM, Melathopoulos AP, Moon KM, White R, Huxter E, Pernal SF, Foster LJ (2012) Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biol 13:R81CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A 199:947–962CrossRefGoogle Scholar
  46. Rinderer TE, Harris JW, Hunt G, De Guzman LI (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41:409–424CrossRefGoogle Scholar
  47. Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270CrossRefPubMedGoogle Scholar
  48. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119CrossRefGoogle Scholar
  49. Rothenbuhler W (1964a) Behavior genetics of nest cleaning in honeybees. I. Responses of four inbred lines to disease killed brood. Anim Behav 12:578–583CrossRefGoogle Scholar
  50. Rothenbuhler W (1964b) Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. Am Zool 4:11–123CrossRefGoogle Scholar
  51. Scannapieco AC, Lanzavecchia SB, Parreño MA, Liendo MC, Cladera JL, Spivak M, Palacio MA (2016) Individual precocity, temporal persistence and task-specialization of hygienic bees from selected colonies of Apis mellifera. J Apic Sci 60:49–60Google Scholar
  52. Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, Genersch E (2012) Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. J Exp Biol 215:264–271CrossRefPubMedGoogle Scholar
  53. Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61CrossRefPubMedGoogle Scholar
  54. Sinakevitch I, Mustard JA, Smith BH (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 6:14536CrossRefGoogle Scholar
  55. Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748CrossRefPubMedGoogle Scholar
  56. Spivak M, Downey DL (1998) Field assays for hygienic behavior in honey bees (Hymenoptera: Apidae). J Econ Entomol 91:64–70CrossRefGoogle Scholar
  57. Spivak M, Reuter G (1998a) Honey bee hygienic behavior. Am Bee J 138:283–286Google Scholar
  58. Spivak M, Reuter G (1998b) Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29:291–302CrossRefGoogle Scholar
  59. Spivak M, Reuter G (2001a) Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32:555–565CrossRefGoogle Scholar
  60. Spivak M, Reuter G (2001b) Varroa destructor infestation in untreated honey bee (Hymenoptera: Apidae) colonies selected for hygienic behavior. J Econ Entomol 94:326–331CrossRefPubMedGoogle Scholar
  61. Spivak M, Masterman R, Ross R, Mesce KA (2003) Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 55:341–354CrossRefPubMedGoogle Scholar
  62. Spötter A, Gupta P, Mayer M, Reinsch N, Bienefeld K (2016) Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera). J Hered 107:220–227CrossRefPubMedPubMedCentralGoogle Scholar
  63. Swanson J, Torto B, Kells S, Mesce K, Tumlinson J, Spivak M (2009) Volatile compounds from chalkbrood Ascosphaera apis infected larvae elict honey bee (Apis mellifera) hygienic behavior. J Chem Ecol 35:1088–1116CrossRefGoogle Scholar
  64. Tsuruda JM, Harris JW, Bourgeois L, Danka RG, Hunt GJ (2012) High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS One 7:48276CrossRefGoogle Scholar
  65. Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger H-J, Blenau W, Broeck JV (2010) The role of octopamine in locusts and other arthropods. J Insect Physiol 56:854–867CrossRefPubMedGoogle Scholar
  66. Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wilson-Rich N, Spivak M, Fefferman N, Starks P (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423CrossRefPubMedGoogle Scholar
  68. Zakar E, Jávor A, Kusza S (2014) Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.). Insect Sci 61:207–215CrossRefGoogle Scholar
  69. Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262CrossRefGoogle Scholar
  70. Zayed A, Robinson GE (2012) Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 46:591–615CrossRefPubMedGoogle Scholar
  71. Zhang Y, Liu X, Zhang W, Han R (2010) Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. J Insect Physiol 56:1207–1218CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  1. 1.Instituto de Genética ‘Ewald A. Favret’, Instituto Nacional de Tecnología AgropecuariaHurlinghamArgentina
  2. 2.Unidad Integrada Instituto Nacional de Tecnología Agropecuaria-Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBalcarceArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas, Ministerio de Ciencia, Tecnología e Innovación ProductivaBuenos AiresArgentina

Personalised recommendations