Advertisement

Insectes Sociaux

, Volume 64, Issue 1, pp 149–154 | Cite as

The mitochondrial genome of Octostruma stenognatha and its phylogenetic implications

  • P. R. Ströher
  • E. Zarza
  • W. L. E. Tsai
  • J. E. McCormack
  • R. M. Feitosa
  • M. R. Pie
Research Article

Abstract

New sequencing technologies are providing a large-scale proliferation of sequence data, including complete mitochondrial genomes as a side effect of target capture methods. In this study, we use massively parallel sequencing to provide the nearly complete mitochondrial genome of the ant Octostruma stenognatha. The annotation of the genome revealed an interesting pattern that agrees with a recent deep reorganization in the systematics within the Formicidae family. This is the first mitogenome for the genus in a lineage, where the scarcity of mitochondrial information has restricted our understanding of its evolutionary history. This is a valuable example of the power and velocity with which products from new sequencing technologies can increase our capacity to understand evolutionary biology, especially in non-model species.

Keywords

Mitogenome Ultraconserved elements Formicidae Ants 

Notes

Acknowledgements

We thank Rogério R. Silva for providing the specimen used in this project. We also thank Michael Branstetter for sharing his specific laboratory protocol and two anonymous reviewers for constructive criticism of our manuscript. This study was funded by a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (486843/2012-2) to MRP.

References

  1. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  2. Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E (2014) Is it an ant or a butterfly? Convergent evolution in the Mitochondrial Gene Order of Hymenoptera and Lepidoptera. Genome Biol Evol 6:3326–3343. doi: 10.1093/gbe/evu265 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baroni Urbani C, de Andrade ML (1994) First description of fossil Dacetini ants with a critical analysis of the current classification of the tribe (amber collection Stuttgart: Hymenoptera, Formicidae. VI: Dacetini). Stuttgarter Beiträge zur Naturkunde Serie B 198:1–65Google Scholar
  4. Berman M, Austin CM, Miller AD (2014) Characterisation of the complete mitochondrial genome and 13 microsatellite loci through next-generation sequencing for the new Caledonian spider-ant Leptomyrmex pallens. Mol Biol Rep 41:1179–1187. doi: 10.1007/s11033-013-2657-5 CrossRefPubMedGoogle Scholar
  5. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319. doi: 10.1016/j.ympev.2012.08.023 CrossRefPubMedGoogle Scholar
  6. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. doi: 10.1093/nar/27.8.1767 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668. doi: 10.1038/33577 CrossRefPubMedGoogle Scholar
  8. Brown WL Jr (1948) A preliminary generic revision of the higher Dacetini (Hymenoptera: Formicidae). Trans Am Entomol Soc 74:101–129Google Scholar
  9. Brown WLJ (1949) Revision of the ant tribe Dacetini. I. Fauna of Japan, China and Taiwan. Muschi 20:1:25Google Scholar
  10. Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and Phylogeny. Annu Rev Entomol 59:95–117. doi: 10.1146/annurev-ento-011613-162007 CrossRefPubMedGoogle Scholar
  11. Cameron SL, Dowton M, Castro LR, Ruberu K, Whiting MF, Austin AD, Diement K, Stevens J (2008) Mitochondrial genome organization and phylogeny of two vespid wasps. Genome 51:800–808. doi: 10.1139/g08-066 CrossRefPubMedGoogle Scholar
  12. de Melo Rodovalho C, Lyra ML, Ferro M, Bacci Jr M (2014) The Mitochondrial genome of the leaf-cutter ant Atta laevigata: a Mitogenome with a large number of Intergenic spacers. PLoS One 9(5):e97117. doi: 10.1371/journal.pone.0097117 CrossRefGoogle Scholar
  13. Dlussky GM, Brothers DJ, Rasnitsyn AP (2003) The first late Cretaceous ants (Hymenoptera: Formicidae) from southern Africa, with comments on the origin of the Myrmicinae. Insect Syst Evol 35:1–13. doi: 10.1163/187631204788964727 CrossRefGoogle Scholar
  14. do Amaral RF, Neves LG, Resende MFR, Mobili F, Miyaki CY, Pellegrino KCM, Biondo C (2015) Ultraconserved elements Sequencing as a low-cost source of complete Mitochondrial Genomes and Microsatellite markers in non-model Amniotes. PLoS One 10:e0138446. doi: 10.1371/journal.pone.0138446 CrossRefGoogle Scholar
  15. Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement ‘hot spot’ in the Hymenoptera. Mol Biol Evol 16:298–309. doi: 10.1093/oxfordjournals.molbev.a026111 CrossRefPubMedGoogle Scholar
  16. Duan X-Y, Peng X-Y, Qian Z-Q (2016) The complete mitochondrial genomes of two globally invasive ants, the Argentine ant Linepithema humile and the little fire ant Wasmannia auropunctata. Conserv Genet Resour. doi: 10.1007/s12686-016-0555-6 Google Scholar
  17. Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal Phylogeny and its evolutionary Implications. Annu Rev Ecol Evol Syst 45:371–395. doi: 10.1146/annurev-ecolsys-120213-091627 CrossRefGoogle Scholar
  18. Faircloth BC (2013) Illumiprocessor: a Trimmomatic wrapper for parallel adapter and quality trimming. http://dx.doi.org/10.6079/J9ILL
  19. Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786–788. doi: 10.1093/bioinformatics/btv646 CrossRefPubMedGoogle Scholar
  20. Faircloth BC, Glenn TC (2012) Not all sequence tags are created equal: designing and validating sequence identification tags robust to Indels. PLoS One 7:e42543. doi: 10.1371/journal.pone.0042543 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor Thousands of genetic markers spanning multiple evolutionary Timescales. Syst Biol 61:717–726. doi: 10.1093/sysbio/sys004 CrossRefPubMedGoogle Scholar
  22. Faircloth BC, Branstetter MG, White ND, Brady SG (2014) Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Resour 15:489–501. doi: 10.1111/1755-0998.12328 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, Young G, Fennell TJ, Allen A, Ambrogio L, Berlin AM, Blumenstiel B, Cibulskis K, Friedrich D, Johnson R, Juhn F, Reilly B, Shammas R, Stalker J, Sykes SM, Thompson J, Walsh J, Zimmer A, Zwirko Z, Gabriel S, Nicol R, Nusbaum C (2011) A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol 12:R1. doi: 10.1186/gb-2011-12-1-r1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Forel A (1917) Cadre synoptique actuel de la faune universelle des fourmis. Bulletin de la Société Vaudoise des Sciences Naturelles 51:229–253Google Scholar
  25. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189. doi: 10.1038/nbt.1523 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gotzek D, Clarke J, Shoemaker D (2010) Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol Biol 10:300. doi: 10.1186/1471-2148-10-300 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi: 10.1038/nbt.1883 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gutrich JJ, VanGelder E, Loope L (2007) Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environ Sci Policy 10:685–696. doi: 10.1016/j.envsci.2007.03.007 CrossRefGoogle Scholar
  29. Hasegawa E, Kobayashi K, Yagi N, Tsuji K (2011) Complete mitochondrial genomes of normal and cheater morphs in the parthenogenetic ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecol News 15(85):90Google Scholar
  30. Havird JC, Santos SR (2014) Performance of single and Concatenated sets of Mitochondrial genes at Inferring Metazoan relationships relative to full Mitogenome data. PLoS One 9:e84080. doi: 10.1371/journal.pone.0084080 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  32. Hung C-M, Lin R-C, Chu J-H, Yeh C-F, Yao C-J, Li S-H (2013) The de novo assembly of Mitochondrial Genomes of the extinct passenger pigeon (Ectopistes migratorius) with next generation sequencing. PLoS One 8:e56301. doi: 10.1371/journal.pone.0056301 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Le TH, Blair D, Agatsuma T, Humair P-F, Campbell NJH, Iwagami M, Littlewood DTJ, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP (2000) Phylogenies inferred from Mitochondrial gene orders–a cautionary tale from the parasitic Flatworms. Mol Biol Evol 17:1123–1125. doi: 10.1093/oxfordjournals.molbev.a026393 CrossRefPubMedGoogle Scholar
  35. Liu G-H, Shao R, Li J-Y, Zhou D-H, Li H, Zhu X-Q (2013) The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genom 14:414. doi: 10.1186/1471-2164-14-414 CrossRefGoogle Scholar
  36. Liu N, Duan X-Y, Qian Z-Q, Wang X-Y, Li X-L, Ding M-Y (2016) Characterization of the complete mitochondrial genome of the Myrmicine ant Vollenhovia emeryi (Insecta: Hymenoptera: Formicidae). Conserv Genet Resour. doi: 10.1007/s12686-016-0535-x Google Scholar
  37. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucl Acids Res 40:W622–W627. doi: 10.1093/nar/gks540 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mao M, Valerio A, Austin AD, Dowton M, Johnson NF (2012) The first mitochondrial genome for the wasp superfamily Platygastroidea: the egg parasitoid Trissolcus basalis. Genome 55:194–204. doi: 10.1139/g2012-005 CrossRefPubMedGoogle Scholar
  39. Mao M, Gibson T, Dowton M (2015) Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mol Phylogenet Evol 84:34–43. doi: 10.1016/j.ympev.2014.12.009 CrossRefPubMedGoogle Scholar
  40. Moritz C (1987) Evolution of animal Mitochondrial Dna: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292. doi: 10.1146/annurev.ecolsys.18.1.269 CrossRefGoogle Scholar
  41. Pérez SP, Corley JC, Farji-Brener AG (2010) Potential impact of the leaf-cutting ant Acromyrmex lobicornis on conifer plantations in northern Patagonia, Argentina. Agric For Entomol 13:191–196. doi: 10.1111/j.1461-9563.2010.00515.x CrossRefGoogle Scholar
  42. Perseke M, Golombek A, Schlegel M, Struck TH (2013) The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol Phylogenet Evol 66:898–905. doi: 10.1016/j.ympev.2012.11.019 CrossRefPubMedGoogle Scholar
  43. Picardi E, Pesole G (2012) Mitochondrial genomes gleaned from human whole-exome sequencing. Nat Methods 9:523–524. doi: 10.1038/nmeth.2029 CrossRefPubMedGoogle Scholar
  44. Ramakodi MP, Singh B, Wells JD, Guerrero F, Ray DA (2015) A 454 sequencing approach to dipteran mitochondrial genome research. Genomics 105:53–60. doi: 10.1016/j.ygeno.2014.10.014 CrossRefPubMedGoogle Scholar
  45. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. doi: 10.1101/gr.128124.111 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Saito S, Tamura K, Aotsuka T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171:1695–1705CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sankoff D, Bryant D, Deneault M, Lang BF, Burger G (2000) Early Eukaryote evolution based on Mitochondrial Gene Order Breakpoints. J Comput Biol 7:521–535. doi: 10.1089/10665270075005092 CrossRefPubMedGoogle Scholar
  48. Shen H, Braband A, Scholtz G (2015) The complete mitogenomes of lobsters and crayfish (Crustacea: Decapoda: Astacidea) reveal surprising differences in closely related taxa and convergences to Priapulida. J Zool Syst Evol Res 53:273–281. doi: 10.1111/jzs.12106 CrossRefGoogle Scholar
  49. Smith MJ, Arndt A, Gorski S, Fajber E (1993) The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol 36:545–554. doi: 10.1007/bf00556359 CrossRefPubMedGoogle Scholar
  50. Song S-N, Tang P, Wei S-J, Chen X-X (2016) Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci Rep 6:20972. doi: 10.1038/srep20972 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tan MH, Gan HM, Schultz MB, Austin CM (2015) Corrigendum to ‘MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes’ [Mol. Phylogenet. Evol. 85 (2015) 180–188]. Mol Phylogenet Evol 87:118. doi:  10.1016/j.ympev.2015.03.017
  52. Ward PS, Brady SG, Fisher BL, Schultz TR (2014) The evolution of Myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Entomol 40:61–81. doi: 10.1111/syen.12090 CrossRefGoogle Scholar
  53. Way M (1992) Role of ants in pest-management. Annu Rev Entomol 37:479–503. doi: 10.1146/annurev.ento.37.1.479 CrossRefGoogle Scholar
  54. Wei S, Shi M, Sharkey MJ, van Achterberg C, Chen X (2010) Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genom 11:371. doi: 10.1186/1471-2164-11-371 CrossRefGoogle Scholar
  55. Xiao J-H, Jia J-G, Murphy RW, Huang D-W (2011) Rapid evolution of the Mitochondrial genome in Chalcidoid Wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS One 6:e26645. doi: 10.1371/journal.pone.0026645 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yang S, Li X, Cai L-G, Qian Z-Q (2016) Characterization of the complete mitochondrial genome of Formica selysi (Insecta: Hymenoptera: Formicidae: Formicinae). Mitochondrial DNA 27(5):3378–3380PubMedGoogle Scholar
  57. Yuan Y, Li Q, Yu H, Kong L (2012) The complete Mitochondrial Genomes of Six Heterodont Bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS ONE 7:e32353. doi: 10.1371/journal.pone.0032353 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  • P. R. Ströher
    • 1
    • 2
  • E. Zarza
    • 3
  • W. L. E. Tsai
    • 3
  • J. E. McCormack
    • 3
  • R. M. Feitosa
    • 1
    • 2
  • M. R. Pie
    • 1
    • 2
  1. 1.Departamento de ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Programa de Pós-Graduação em EntomologiaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Moore Laboratory of ZoologyOccidental CollegeLos AngelesUSA

Personalised recommendations