Insectes Sociaux

, Volume 64, Issue 1, pp 141–147 | Cite as

Outnumbered: a new dominant ant species with genetically diverse supercolonies in Ethiopia

  • D. M. Sorger
  • W. Booth
  • A. Wassie Eshete
  • M. Lowman
  • M. W. Moffett
Research Article


A Lepisiota (Hymenoptera: Formicidae: Formicinae) species in Ethiopia has been observed forming supercolonies spanning up to 38 km. L. canescens occurs at very high densities where there is sufficient moisture or herbaceous cover and dominates the local ant community, traits reminiscent of an invasive species. The supercolonies are genetically diverse, however, indicating they have not gone through the population bottleneck usually characteristic of species invasions. We conclude that the species is native to this region, though expanding its range locally into areas of human disturbance, where it is exploding in numbers. The lack of aggression across a genetically diverse population suggests that mitochondrial genetic variation is decoupled from variation relating to colony recognition cues like cuticular hydrocarbons. All in all, L. canescens could have the makings of an invasive species at an international scale and may represent a novel system to study the evolution and spread of supercolonies in ants.


Aggression Church forest mtDNA Cytochrome oxidase I Invasive ant syndrome Recognition Unicolonial 



The authors would like to thank the following people for assistance during this project: Harold Heatwole, Peter Hawkes, Gernot Kunz, Tegistu Adane, Addisu Osman, Barbara Thorne, Rob Plowes, Kate Parr, Brian Taylor, Stefan Cover, Nick Haddad, Robert R. Dunn and the Dunn Lab. This project received funding from the TREE (Tree Research, Exploration and Education) Foundation, the Southeast Climate Science Center, and the National Science Foundation (NSF-CAREER Nr. 09533390). Molecular sequencing was supported by The University of Tulsa faculty startup of WB.

Supplementary material

40_2016_524_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)


  1. Ascunce MS, Yang C-C, Oakey J et al (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068. doi: 10.1126/science.1198734 CrossRefPubMedGoogle Scholar
  2. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  3. Bernhard F, Cagniant H (1962) Capture au Hoggar de trois Acantholepis nouveaux pour ce massif avec observations sur leurs modes de vie. Bull Société Entomol Fr 67:161–164Google Scholar
  4. Booth W, Santangelo RG, Vargo EL et al (2011) Population genetic structure in German cockroaches (Blattella germanica): differentiated islands in an agricultural landscape. J Hered 102:175–183. doi: 10.1093/jhered/esq108 CrossRefPubMedGoogle Scholar
  5. Buczkowski G, Bennett G (2008) Seasonal polydomy in a polygynous supercolony of the odorous house ant, Tapinoma sessile. Ecol Entomol 33:780–788. doi: 10.1111/j.1365-2311.2008.01034.x Google Scholar
  6. Cremer S, Ugelvig LV, Drijfhout FP et al (2008) The evolution of invasiveness in Garden ants. PLoS One 3:e3838. doi: 10.1371/journal.pone.0003838 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gotzek D, Brady SG, Kallal RJ, LaPolla JS (2012) The importance of using multiple approaches for identifying emerging invasive species: the case of the Rasberry crazy ant in the United States. PLoS One 7:e45314. doi: 10.1371/journal.pone.0045314 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hebert PD, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817CrossRefPubMedPubMedCentralGoogle Scholar
  10. Heller NE, Sanders NJ, Gordon DM (2006) Linking temporal and spatial scales in the study of an Argentine ant invasion. Biol Invasions 8:501–507. doi: 10.1007/s10530-005-6411-3 CrossRefGoogle Scholar
  11. Heller NE, Ingram KK, Gordon DM (2008) Nest connectivity and colony structure in unicolonial Argentine ants. Insectes Soc 55:397–403. doi: 10.1007/s00040-008-1019-0 CrossRefGoogle Scholar
  12. Hoffmann B, Davis P, Gott K et al (2011) Improving ant eradications: details of more successes, a global synthesis and recommendations. Aliens Invasive Species Bull 31:16–23Google Scholar
  13. Hölldobler B, Wilson EO (1990) The ants, 1st edn. Belknap, CambridgeCrossRefGoogle Scholar
  14. Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol Conserv 127:319–326. doi: 10.1016/j.biocon.2005.05.016 CrossRefGoogle Scholar
  15. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233. doi: 10.1146/annurev.ecolsys.33.010802.150444 CrossRefGoogle Scholar
  16. Ingram KK, Gordon DM (2003) Genetic analysis of dispersal dynamics in an invading population of Argentine ants. Ecology 84:2832–2842CrossRefGoogle Scholar
  17. Janicki J, Narula N, Ziegler M et al (2016) Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of Ecol Inform 32:185–193CrossRefGoogle Scholar
  18. Kümmerli R, Keller L (2007) Contrasting population genetic structure for workers and queens in the putatively unicolonial ant Formica exsecta: population genetic structure in ants. Mol Ecol 16:4493–4503. doi: 10.1111/j.1365-294X.2007.03514.x CrossRefPubMedGoogle Scholar
  19. Leniaud L, Pichon A, Uva P, Bagnères A-G (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1. doi: 10.1017/S0007485308006032 CrossRefPubMedGoogle Scholar
  20. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  21. Menke SB, Booth W, Dunn RR et al (2010) Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS One 5:e9194. doi: 10.1371/journal.pone.0009194 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moffett MW (2012) Supercolonies of billions in an invasive ant: what is a society? Behav Ecol 23:925–933. doi: 10.1093/beheco/ars043 CrossRefGoogle Scholar
  23. Pedersen JS, Krieger MJ, Vogel V et al (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791CrossRefPubMedGoogle Scholar
  24. Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Soc 50:151–159. doi: 10.1007/s00040-003-0624-1 CrossRefGoogle Scholar
  25. Saenz VL, Booth W, Schal C, Vargo EL (2012) Genetic analysis of bed bug populations reveals small propagule size within individual infestations but high genetic diversity across infestations from the eastern United States. J Med Entomol 49:865–875. doi: 10.1603/ME11202 CrossRefPubMedGoogle Scholar
  26. Seppä P, Johansson H, Gyllenstrand N et al (2012) Mosaic structure of native ant supercolonies. Mol Ecol 21:5880–5891. doi: 10.1111/mec.12070 CrossRefPubMedGoogle Scholar
  27. Sithole H, Smit IP, Parr CL (2010) Preliminary investigations into a potential ant invader in Kruger National Park, South Africa. Afr J Ecol 48:736–743Google Scholar
  28. Sunamura E, Espadaler X, Sakamoto H et al (2009) Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insectes Soc 56:143–147. doi: 10.1007/s00040-009-0001-9 CrossRefGoogle Scholar
  29. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Torres CW, Brandt M, Tsutsui ND (2007) The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insectes Soc 54:363–373. doi: 10.1007/s00040-007-0954-5 CrossRefGoogle Scholar
  31. Tschinkel WR (2013) The fire ants, Reprint edn. Belknap, CambridgeGoogle Scholar
  32. Tsutsui ND (2004) Scents of self: the expression component of self/non-self recognition systems. Ann Zool Fenn 41:713–727Google Scholar
  33. Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58CrossRefGoogle Scholar
  34. Van Wilgenburg E, Torres CW, Tsutsui ND (2010) The global expansion of a single ant supercolony: a transcontinental Argentine ant supercolony. Evol Appl 3:136–143. doi: 10.1111/j.1752-4571.2009.00114.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vogel V, Pedersen JS, d’Ettorre P et al (2009) Dynamics and genetic structure of argentine ant supercolonies in their native range. Evolution 63:1627–1639. doi: 10.1111/j.1558-5646.2009.00628.x CrossRefPubMedGoogle Scholar
  36. Vogel V, Pedersen JS, Giraud T et al (2010) The worldwide expansion of the Argentine ant. Divers Distrib 16:170–186. doi: 10.1111/j.1472-4642.2009.00630.x CrossRefGoogle Scholar
  37. West Australian Department of Agriculture and Food (2015) Browsing ants. Accessed 31 Aug 2015

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  1. 1.Department of Applied EcologyNorth Carolina State UniversityRaleighUSA
  2. 2.W.M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA
  3. 3.Research & Collections, North Carolina Museum of Natural SciencesRaleighUSA
  4. 4.Department of Biological ScienceThe University of TulsaTulsaUSA
  5. 5.College of AgricultureBahir Dar UniversityBahir DarEthiopia
  6. 6.Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan FranciscoUSA
  7. 7.National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations