Advertisement

Insectes Sociaux

, Volume 63, Issue 4, pp 629–633 | Cite as

Molecular detection of the tracheal mite Locustacarus buchneri in native and non-native bumble bees in Chile

  • N. Arismendi
  • A. Bruna
  • N. Zapata
  • M. Vargas
Short Communication

Abstract

Bumble bees (Bombus spp.) are considered one of the most important pollinators of native, non-native, and domesticated plants. Pathogens and parasites, such as the tracheal mite Locustacarus buchneri (Podapolipidae), are harmful to bumble bees. We developed primers based on the mitochondrial CO1 gene for the specific detection of L. buchneri directly from samples of native Bombus dahlbomii and non-native B. terrestris and B. ruderatus. PCR products amplified and sequenced for these primers shared 100 % identity among themselves and around 99–100 % identity with other sequences of L. buchneri reported in Belgium, the Netherlands, and Japan. Bombus terrestris was the most infected species (41 %), followed by B. ruderatus (31 %) and B. dahlbomii (23 %). This is the first report involving L. buchneri in native and non-native bumble bees in Chile. Our described PCR-based detection offers a feasible, specific, and rapid method for the screening of L. buchneri in any bumble bee species.

Keywords

Bombus dahlbomii PCR detection Specific primers CO1 gene Pollinators 

Notes

Acknowledgments

This study was supported by Grants FONDECYT No. 1140653 and Postdoctoral FONDECYT No. 3150231 from the National Commission for Scientific and Technological Research, CONICYT, Chile.

References

  1. Aizen MA (2001) Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology 82:127–144CrossRefGoogle Scholar
  2. Allende JL, Montalva J (2011) First record of the mite Kuzinia laevis (Dujardin, 1849) (Acarina: Acaridae) in Chile. Bol Biodiv Chile 5:36–38Google Scholar
  3. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefPubMedGoogle Scholar
  4. Arbulo N, Antúnez K, Salvarrey S, Santos E, Branchiccela B, Martín-Hernández R, Higes M, Invernizzi C (2015) High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J Invertebr Pathol 130:165–168CrossRefPubMedGoogle Scholar
  5. Arismendi N, Bruna A, Zapata N, Vargas M (2016) PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J Invertebr Pathol 134:1–5CrossRefPubMedGoogle Scholar
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  7. Goka K, Okabe K, Yoneda M, Niwa S (2001) Bumblebee commercialization will cause worldwide migration of parasitic mites. Mol Ecol 10:2095–2099CrossRefPubMedGoogle Scholar
  8. Goka K, Okabe K, Yoneda M (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization. Popul Ecol 48:285–291CrossRefGoogle Scholar
  9. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208CrossRefPubMedGoogle Scholar
  10. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  11. Graystock P, Yates K, Evison SEF, Darvill B, Goulson D, Hughes WOH (2013) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50:1207–1215Google Scholar
  12. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  13. Kojima Y, Yoshiyama M, Kimura K, Kadowaki T (2011) PCR-based detection of a tracheal mite of the honey bee Acarapis woodi. J Invertebr Pathol 108:135–137PubMedGoogle Scholar
  14. Montalva J, Ruz L, Arroyo MTK (2008) Bombus terrestris Linnaeus (Hymenoptera: Apidae). Causas y consecuencias de su introducción. Chagual 6:13–20Google Scholar
  15. Montalva J, Dudley L, Arroyo MK, Retamales H, Abramovich HA (2011) Geographic distribution and associated flora of native and introduced bumble bees (Bombus spp.) in Chile. J Apic Res 50:11–21CrossRefGoogle Scholar
  16. Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534CrossRefGoogle Scholar
  17. Murúa MM, Grez AA, Simonetti JA (2011) Changes in wing length in the pollinator Bombus dahlbomii occurring with the fragmentation of the Maulino forest, Chile. Cien Invest Agr 38:391–396CrossRefGoogle Scholar
  18. Otterstatter MC, Whidden TL (2004) Patterns of parasitism by tracheal mites (Locustacarus buchneri) in natural bumble bee populations. Apidologie 35:351–357CrossRefGoogle Scholar
  19. Otterstatter MC, Gegear RJ, Colla S, Thomson JD (2005) Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav Ecol Sociobiol 58:383–389CrossRefGoogle Scholar
  20. Plischuk S, Lange CE (2012) Sphaerularia bombi (Nematoda: Sphaerulariidae) parasitizing Bombus atratus (Hymenoptera: Apidae) in southern South America. Parasitol Res 111:947–950CrossRefPubMedGoogle Scholar
  21. Plischuk S, Pocco ME, Lange CE (2013) The tracheal mite Locustacarus buchneri in South American native bumble bees (Hymenoptera: Apidae). Parasitol Int 62:505–507CrossRefPubMedGoogle Scholar
  22. Ruz L (2002) Bee pollinators introduced to Chile: a review. In: Kevan P, Imperatriz F (eds) Pollinating bees the conservation link between agriculture and nature. Ministry of Environment, Brazil, p 297Google Scholar
  23. Schlüns H, Sadd BM, Schmid-Hempel P, Crozier RH (2010) Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. Dev Comp Immunol 34:705–709CrossRefPubMedGoogle Scholar
  24. Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S et al (2014) The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 83:823–837CrossRefPubMedGoogle Scholar
  25. Stout JC, Morales CL (2009) Ecological impacts of invasive alien species on bees. Apidologie 40:388–409CrossRefGoogle Scholar
  26. Velthuis HHW, Van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451CrossRefGoogle Scholar
  27. Yoneda M, Furuta H, Kanbe Y, Tsuchiva K, Okabe K, Goka K (2008) Reproduction and transmission within a colony of bumblebee tracheal Locustacarus buchneri (Acari: Podapolipidae) in Bombus terrestris (Hymenoptera: Apidae). Appl Entomol Zool 43:391–395CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  1. 1.Laboratories of Virology and Bee Pathology, Faculty of AgronomyUniversidad de ConcepciónChillánChile
  2. 2.Department of Plant Production, Faculty of AgronomyUniversidad de ConcepciónChillánChile

Personalised recommendations