Insectes Sociaux

, Volume 63, Issue 4, pp 565–574 | Cite as

Effect of water and resource availability on ant feeding preferences: a field experiment on the Mediterranean ant Crematogaster scutellaris

Research Article


Ants’ feeding habits are affected by individual and collective needs, which may vary among seasons. In this study, we tested the food preferences of the Mediterranean ant Crematogaster scutellaris toward sucrose and amino acid solutions at increasing concentrations, during spring and summer, by analyzing individual choices and mass recruitment in the field. Given that water may be limiting in summer, we also analyzed the role of water as a resource itself. Finally, to investigate how previous short-term availability of resources affects feeding choices, we over-supplied colonies with a continuous flux of amino acids, sucrose and water, before conducting individual tests. As for sucrose, only the most concentrated solutions were largely accepted during the spring, whereas all the solutions were equally taken during the summer. On the contrary, the average acceptance of all amino acid solutions was high only during summer and low in spring. Similar results emerged for recruitments on both nutrients. Amino acid supplementation had no effect on resource acceptance, whereas both sucrose and water supplementation affected the acceptance of all other resources. This study provides hints on the factors affecting seasonal variations in the uptake of carbohydrates and amino acids, and more importantly, clearly shows how food choice is affected by water availability, a factor frequently overlooked in the study of nutritional ecology of ants.


Ants Feeding preferences Nutrient balancing Recruitment 



Authors wish to thank Sara Panichi, Alberto Masoni, Elena Ricevuto and Marusca Faleppi for their support and help. Thanks are also due to two anonymous referees whose comments much improved a previous version of the paper.


  1. Abbott KL, Green PT, O’Dowd DJ (2014) Seasonal shifts in macronutrient preferences in supercolonies of the invasive Yellow Crazy Ant Anoplolepis gracilipes (Smith, 1857) (Hymenoptera: Formicidae) on Christmas Island, Indian Ocean. Aust J Entomol 53:337–346. doi: 10.1111/aen.12081 CrossRefGoogle Scholar
  2. Anderson C, McShea DW (2001) Intermediate-level parts in insect societies: adaptive structures that ants build away from the nest. Insect Soc 48:291–301. doi: 10.1007/PL00001781 CrossRefGoogle Scholar
  3. Annie GH, Lee CY (2007) Comparative nutritional preferences of tropical pest ants, Monomorium pharaonis, Monomorium floricola and Monomorium destructor (Hymenoptera: Formicidae). Sociobiology 49:165–186Google Scholar
  4. Arganda S, Nicolis SC, Perochain A, Pechabadens C, Latil G, Dussutour A (2014) Collective choice in ants: the role of protein and carbohydrates ratios. J Insect Physiol 69:19–26. doi: 10.1016/j.jinsphys.2014.04.002 CrossRefPubMedGoogle Scholar
  5. Bagnoli B (2003) Nemici naturali e controllo biologico di Saissetia oleae su olivo in Toscana. ARSIA Regione Toscana, FlorenceGoogle Scholar
  6. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  7. Bernard F (1968) Les fourmis (Hymenoptera Formicidae) d’Europe occidentale et septentrionale. Maisson, ParisGoogle Scholar
  8. Blüthgen N, Feldhaar H (2010) Food and shelter: how resources influence ant ecology. In: Lach L, Parr C, Abbott K (eds) ant ecology. Oxford University Press, Oxford, pp 115–136Google Scholar
  9. Blüthgen N, Fiedler K (2004) Competition for composition: lessons from nectar-feeding ant communities. Ecology 85:1479–1485. doi: 10.1890/03-0430 CrossRefGoogle Scholar
  10. Breed MD, Fewell JH, Moore AJ, Williams KR (1987) Graded recruitment in a ponerine ant. Behav Ecol Sociobiol 20:407–411CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Byk J, Del-Claro K (2011) Ant–plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Popul Ecol 53:327–332. doi: 10.1007/s10144-010-0240-7 CrossRefGoogle Scholar
  13. Cammell ME, Way MJ, Paiva MR (1996) Diversity and structure of ant communities associated with oak, pine, eucalyptus and arable habitats in Portugal. Insect Soc 43:37–46. doi: 10.1007/BF01253954 CrossRefGoogle Scholar
  14. Casevitz-Weulersse J (1972) Habitats et comportement nidificateur de Crematogaster scutellaris Olivier (Hym. Formicidae). Soc Entomol France Bull 77:12–19Google Scholar
  15. Cassill D (2003) Rules of supply and demand regulate recruitment to food in an ant society. Behav Ecol Sociobiol 54:441–450. doi: 10.1007/s00265-003-0639-7 CrossRefGoogle Scholar
  16. Cerdá X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55. doi: 10.1046/j.1365-2435.1998.00160.x CrossRefGoogle Scholar
  17. Clark CW, Mangel M (2000) Dynamic state variable models in ecology. Oxford University Press, OxfordGoogle Scholar
  18. Cook SC, Eubanks MD, Gold RE, Behmer ST (2010) Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim Behav 79:429–437. doi: 10.1016/j.anbehav.2009.11.022 CrossRefGoogle Scholar
  19. Cros S, Cerdá X, Retana J (1997) Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Ecoscience 3:269–278Google Scholar
  20. Davidson DW (2005) Ecological stoichiometry of ants in a New World rain forest. Oecologia 142:221–231. doi: 10.1007/s00442-004-1722-0 CrossRefPubMedGoogle Scholar
  21. Davidson DW, Cook SC, Snelling RR (2004) Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266. doi: 10.1007/s00442-004-1508-4 CrossRefPubMedGoogle Scholar
  22. Detrain C, Deneubourg JL (2006) Self-organized structures in a superorganism: do ants “behave” like molecules? Phys Life Rev 3:162–187. doi: 10.1016/j.plrev.2006.07.001 CrossRefGoogle Scholar
  23. Detrain C, Prieur J (2014) Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. J Insect Physiol 64:74–80. doi: 10.1016/j.jinsphys.2014.03.010 CrossRefPubMedGoogle Scholar
  24. Detrain C, Verheggen FJ, Diez L, Wathelet B, Haubruge E (2010) Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts. Physiol Entomol 35:168–174. doi: 10.1111/j.1365-3032.2010.00730.x CrossRefGoogle Scholar
  25. Dhami MK, Gardner-Gee R, Van Houtte J, Villas-Bôas SG, Beggs JR (2011) Species-specific chemical signatures in scale insect honeydew. J Chem Ecol 37:1231–1241. doi: 10.1007/s10886-011-0030-5 CrossRefPubMedGoogle Scholar
  26. Dornhaus A, Franks NR (2006) Colony size affects collective decision-making in the ant Temnothorax albipennis. Insect Soc 53:420–427. doi: 10.1007/s00040-006-0887-4 CrossRefGoogle Scholar
  27. Dussutour A, Simpson SJ (2008) Carbohydrate regulation in relation to colony growth in ants. J Exp Biol 211:2224–2232. doi: 10.1242/jeb.017509 CrossRefPubMedGoogle Scholar
  28. Dussutour A, Simpson SJ (2009) Communal nutrition in ants. Curr Biol 19:740–744. doi: 10.1016/j.cub.2009.03.015 CrossRefPubMedGoogle Scholar
  29. Dussutour A, Simpson SJ (2012) Ant workers die young and colonies collapse when fed a high-protein diet. P Roy Soc Lond B Bio 279:2402–2408. doi: 10.1098/rspb.2012.0051 CrossRefGoogle Scholar
  30. Dussutour A, Deneubourg JL, Fourcassié V (2005) Amplification of individual preferences in a social context: the case of wall-following in ants. P Roy Soc Lond B Bio 272:705–714. doi: 10.1098/rspb.2004.2990 CrossRefGoogle Scholar
  31. Frizzi F, Ciofi C, Dapporto L, Natali C, Chelazzi G, Turillazzi S, Santini G (2015) The rules of aggression: how genetic, chemical and spatial factors affect intercolony fights in a dominant species, the Mediterranean acrobat ant Crematogaster scutellaris. PLoS One 10:e0137919. doi: 10.1371/journal.pone.0137919 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gonzalez R, Campos M (1990) Evaluation of natural enemies of the Phloeotribus scarabaeoides (Bern.) (Col: Scolytidae) in Granada olive groves. Acta Hortic 286:355–358CrossRefGoogle Scholar
  33. González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813CrossRefPubMedPubMedCentralGoogle Scholar
  34. Grover CD, Kay AD, Monson JA, Marsh TC, Holway DA (2007) Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. P Roy Soc Lond B Bio 274:2951–2957. doi: 10.1098/rspb.2007.1065 CrossRefGoogle Scholar
  35. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  36. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  37. Houston AI, McNamara JM (1999) Models of adaptive behaviour: an approach based on state. Cambridge University Press, CambridgeGoogle Scholar
  38. Judd TM (2005) The effects of water, season, and colony composition on foraging preferences of Pheidole ceres [Hymenoptera: Formicidae]. J Insect Behav 18:781–803. doi: 10.1007/s10905-005-8740-6 CrossRefGoogle Scholar
  39. Kay AD (2002) Applying optimal foraging theory to assess nutrient availability ratios for ants. Ecology 83:1935–1944. doi: 10.2307/3071776 CrossRefGoogle Scholar
  40. Kay AD (2004) The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behav Ecol 15:63–70. doi: 10.1093/beheco/arg106 CrossRefGoogle Scholar
  41. Kay AD, Zumbusch TB, Heinen JL, Marsh TC, Holway DA (2010) Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants. Ecology 91:57–64. doi: 10.1890/09-0908.1 CrossRefPubMedGoogle Scholar
  42. Kay AD, Bruning AJ, van Alst A, Abrahamson TT, Hughes WOH, Kaspari M (2014) A carbohydrate-rich diet increases social immunity in ants. P Roy Soc Lond B Bio 281:2951–2957. doi: 10.1098/rspb.2007.1065 CrossRefGoogle Scholar
  43. Kotler BP, Dickman CR, Brown JS (1998) The effects of water on patch use by two Simpson Desert granivores (Corvus coronoides and Pseudomys hermannsburgensis). Aust J Ecol 23:574–578. doi: 10.1111/j.1442-9993.1998.tb00767.x CrossRefGoogle Scholar
  44. Lee Cassill D, Tschinkel WR (1999) Regulation of diet in the fire ant, Solenopsis invicta. J Insect Behav 12:307–328. doi: 10.1023/A:1020835304713 CrossRefGoogle Scholar
  45. Mailleux AC, Deneubourg JL, Detrain C (2000) How do ants assess food volume? Anim Behav 59:1061–1069. doi: 10.1006/anbe.2000.1396 CrossRefPubMedGoogle Scholar
  46. Mailleux AC, Deneubourg JL, Detrain C (2003) Regulation of ants’ foraging to resource productivity. P Roy Soc Lond B Bio 270:1609–1616. doi: 10.1098/rspb.2003.2398 CrossRefGoogle Scholar
  47. Mailleux AC, Detrain C, Deneubourg JL (2005) Triggering and persistence of trail-laying in foragers of the ant Lasius niger. J Insect Physiol 51:297–304. doi: 10.1016/j.jinsphys.2004.12.001 CrossRefPubMedGoogle Scholar
  48. Mailleux AC, Detrain C, Deneubourg JL (2006) Starvation drives a threshold triggering communication. J Exp Biol 209:4224–4229. doi: 10.1242/jeb.02461 CrossRefPubMedGoogle Scholar
  49. McCullagh P, Nelder JA (1989) Generalized linear models (second edition) monographs on statistics and applied probability 37. Chapman & Hall/CRC, New YorkGoogle Scholar
  50. Menzel F, Staab M, Chung AY, Gebauer G, Bluethgen N (2012) Trophic ecology of parabiotic ants: do the partners have similar food niches? Austral Ecol 37:537–546. doi: 10.1111/j.1442-9993.2011.02290.x CrossRefGoogle Scholar
  51. Morris TI, Symondson WOC, Kidd NAC, Jervis MA, Campos M (1998) Are ants significant predators of the olive moth, Prays oleae? Crop Prot 17:365–366. doi: 10.1016/S0261-2194(98)00016-7 CrossRefGoogle Scholar
  52. Morris TI, Campos M, Kidd NAC, Jervis MA, Symondson WOC (1999) Dynamics of the predatory arthropod community in Spanish olive groves. Agr Forest Entomol 1:219–228. doi: 10.1046/j.1461-9563.1999.00030.x CrossRefGoogle Scholar
  53. Morris TI, Symondson WOC, Kidd NA, Campos M (2002) The effect of different ant species on the olive moth, Prays oleae (Bern.), in Spanish olive orchard. J Appl Entomol 126:224–230. doi: 10.1046/j.1439-0418.2002.00647.x CrossRefGoogle Scholar
  54. Ottonetti L, Tucci L, Chelazzi G, Santini G (2008) Stable isotopes analysis to assess the trophic role of ants in a Mediterranean agroecosystem. Agr Forest Entomol 10:29–36. doi: 10.1111/j.1461-9563.2007.00358.x CrossRefGoogle Scholar
  55. Pasteels JM, Deneubourg JL (1987) From individual to collective behavior in social insects. Birkhäuser Verlag, BaselGoogle Scholar
  56. Portha S, Deneubourg JL, Detrain C (2002) Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behav Ecol 13:776–781CrossRefGoogle Scholar
  57. Portha S, Deneubourg JL, Detrain C (2004) How food type and brood influence foraging decisions of Lasius niger scouts. Anim Behav 68:115–122. doi: 10.1111/j.1461-9563.2007.00358.x CrossRefGoogle Scholar
  58. Pringle EG, Akçay E, Raab TK, Dirzo R, Gordon DM (2013) Water stress strengthens mutualism among ants, trees, and scale insects. PLoS Biol 11:e1001705. doi: 10.1371/journal.pbio.1001705 CrossRefPubMedPubMedCentralGoogle Scholar
  59. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Wien.
  60. Redolfi I, Bueno MC, Pascual F (2002) Patrón de actividad de Tapinoma nigerrima (Nylander) y Crematogaster scutellaris (Olivier) (Hymenoptera, Formicidae) en el cultivo de olivo y en el laboratorio. Zool Baetica 13:37–56Google Scholar
  61. Ricks BL, Vinson BS (1970) Feeding acceptability of certain insects and various water-soluble compounds to two varieties of the imported fire ant. J Econ Entomol 63:145–148. doi: 10.1093/jee/63.1.145 CrossRefGoogle Scholar
  62. Rowles AD, Silverman J (2009) Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia 161:161–171. doi: 10.1242/jeb.017509 CrossRefPubMedGoogle Scholar
  63. Santini G, Tucci L, Ottonetti L, Frizzi F (2007) Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol Entomol 32:319–326. doi: 10.1111/j.1365-2311.2007.00882.x CrossRefGoogle Scholar
  64. Santini G, Ramsay PM, Tucci L, Ottonetti L, Frizzi F (2011) Spatial patterns of the ant Crematogaster scutellaris in a model ecosystem. Ecol Entomol 36:625–634. doi: 10.1111/j.1365-2311.2011.01306.x CrossRefGoogle Scholar
  65. Schatz B, Hossaert-McKey M (2003) Interactions of the ant Crematogaster scutellaris with the fig/fig wasp mutualism. Ecol Entomol 28:359–368. doi: 10.1046/j.1365-2311.2003.00519.x CrossRefGoogle Scholar
  66. Schilman PE (2011) Trail-laying behaviour as a function of resource quality in the ant Camponotus rufipes. Psyche J Entomol. doi: 10.1155/2011/139385
  67. Schwander T, Rosset H, Chapuisat M (2005) Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav Ecol Sociobiol 59:215–221. doi: 10.1007/s00265-005-0027-6 CrossRefGoogle Scholar
  68. Sengupta P, Ghorai N, Mukhopadhyay S (2010) Food preference and foraging of fire ant Solenopsis nitens. Proc Zool Soc 63:73–77. doi: 10.1007/s12595-010-0010-8 CrossRefGoogle Scholar
  69. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  70. Traniello JF (1989) Foraging strategies of ants. Annu Rev Entomol 34:191–210CrossRefGoogle Scholar
  71. Villagran M, Soria FJ, Ocete ME (1992) Estudio del comportamiento alimentario de Crematogaster scutellaris Oliv. (Hym. Formicidae) en tres alcornocales del SW español. Bol San Veg Plagas 20:637–642Google Scholar
  72. Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491CrossRefGoogle Scholar
  73. Way MJ, Cammell ME, Paiva MR, Collingwood CA (1997) Distribution and dynamics of the Argentine ant Linepithema (Iridomyrmex) humile (Mayr) in relation to vegetation, soil conditions, topography and native competitor ants in Portugal. Insect Soc 44:415–433. doi: 10.1007/s000400050062 CrossRefGoogle Scholar
  74. Woodring J, Wiedemann R, Fischer MK, Hoffmann KH, Völkl W (2004) Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol Entomol 29:311–319. doi: 10.1007/s000400050062 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  • F. Frizzi
    • 1
  • A. Rispoli
    • 1
  • G. Chelazzi
    • 1
  • G. Santini
    • 1
  1. 1.Department of BiologyUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations