Insectes Sociaux

, Volume 63, Issue 2, pp 291–298 | Cite as

Colony size evolution in ants: macroevolutionary trends

  • A. T. BurchillEmail author
  • C. S. Moreau
Research Article


Colony size is an incredibly important factor in social insect ecology: it affects everything from foraging strategies to colony defense to mating systems to the degree of polymorphism. However, colony sizes vary dramatically among ant species (Formicidae): sizes range from several workers living together to super-colonies that stretch for hundreds of kilometers. Although the origins of eusociality and colonial life have been extensively theorized, little work has been done describing the evolution of colony size that followed after. Our study provides the first large-scale investigation into such issues, incorporating colony size data from 118 genera and recently published, nearly complete genus-level molecular phylogenies. We find that colony size change exhibits a bifurcation pattern similar to the feedback loop theory posited by Bourke 1999. Once colony sizes become sufficiently large, they rarely undergo radical decreases in size on a macroevolutionary scale. Additionally, the magnitude of colony size changes seem relatively small: rarely do colony sizes jump from small to large sizes without first transitioning through an intermediate size. Lastly, we echo many previous authors in advocating for the release of unpublished sociometric data and a push toward its further acquisition.


Formicidae Eusociality Comparative methods Phylogenetics MuSSE Colony size Group size 



We thank Benjamin E. R. Rubin and Max E. Winston for helpful discussions to improve this manuscript. We thank Michael LaBarbera and Marcus Kronforst for reading earlier versions of this manuscript. We thank two anonymous reviewers who helped improve this manuscript. We thank the National Science Foundation Research Experience for Undergraduates (NSF REU) program for support of A.T.B. during the summer of 2013. We also thank the National Science Foundation (DEB-1050243, DEB-1442316, and IOS-1354193) and an anonymous donor for support of C.S.M.

Supplementary material

40_2016_465_MOESM1_ESM.xls (66 kb)
Supplementary material 1 (XLS 66 kb)
40_2016_465_MOESM2_ESM.doc (22 kb)
Supplementary material 2 (DOC 21 kb)


  1. Abbot P, Abe J, Alcock J et al (2011) Inclusive fitness theory and eusociality. Nature 471:E1–E4. doi: 10.1038/nature09831 CrossRefPubMedGoogle Scholar
  2. Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev Camb Philos Soc 76:S1464793101005656. doi: 10.1017/S1464793101005656 CrossRefGoogle Scholar
  3. Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony Size, communication and ant foraging strategy. Psyche A J Entomol 96:239–256. doi: 10.1155/1989/94279 CrossRefGoogle Scholar
  4. Bolton B (2013) An online catalog of the ants of the world. Accessed 1 Jan 2013
  5. Bonner JT (1988) The evolution of complexity by means of natural selection. Princeton University Press, PrincetonGoogle Scholar
  6. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evolut Biol 12:245–257. doi: 10.1046/j.1420-9101.1999.00028.x CrossRefGoogle Scholar
  7. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, PrincetonGoogle Scholar
  8. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci 103:18172–18177. doi: 10.1073/pnas.0605858103 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  10. Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, OxfordGoogle Scholar
  11. de Vos JM, Hughes CE, Schneeweiss GM et al (2014) Heterostyly accelerates diversification via reduced extinction in primroses. Proc Biol Sci 281:20140075. doi: 10.1098/rspb.2014.0075 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dew RM, Rehan SM, Tierney SM et al (2012) A single origin of large colony size in allodapine bees suggests a threshold event among 50 million years of evolutionary tinkering. Insectes Soc 59:207–214. doi: 10.1007/s00040-011-0206-6 CrossRefGoogle Scholar
  13. Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141. doi: 10.1146/annurev-ento-120710-100604 CrossRefPubMedGoogle Scholar
  14. FitzJohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol 3:1084–1092. doi: 10.1111/j.2041-210X.2012.00234.x CrossRefGoogle Scholar
  15. FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol 58:595–611. doi: 10.1093/sysbio/syp067 CrossRefPubMedGoogle Scholar
  16. Gautrais J, Theraulaz G, Deneubourg J-L, Anderson C (2002) Emergent polyethism as a consequence of increased colony size in insect societies. J Theor Biol 215:363–373. doi: 10.1006/jtbi.2001.2506 CrossRefPubMedGoogle Scholar
  17. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  18. Hou C, Kaspari M, Vander Zanden HB, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci USA 107:3634–3638. doi: 10.1073/pnas.0908071107 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216. doi: 10.1126/science.1156108 CrossRefPubMedGoogle Scholar
  20. Kao AB, Couzin ID (2014) Decision accuracy in complex environments is often maximized by small group sizes. Proc Biol Sci 281:20133305. doi: 10.1098/rspb.2013.3305 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610. doi: 10.1086/285758 CrossRefGoogle Scholar
  22. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578. doi: 10.1111/j.1523-1739.2004.00468.x CrossRefGoogle Scholar
  23. Kramer BH, Schaible R (2013) Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biol J Linn Soc 109:710–724. doi: 10.1111/bij.12072 CrossRefGoogle Scholar
  24. Laskis KO, Tschinkel WR (2009) The seasonal natural history of the ant, Dolichoderus mariaes, in northern Florida. J Insect Sci 9:1–26. doi: 10.1673/031.009.0201 CrossRefGoogle Scholar
  25. Lucky A, Trautwein MD, Guénard BS et al (2013) Tracing the rise of ants-out of the ground. PLoS ONE 8:e84012. doi: 10.1371/journal.pone.0084012 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Maddison WP, Maddison DR (2011) Mesquite 2.75: a modular system for evolutionary analysis.
  27. Maliska ME, Pennell MW, Swalla BJ (2013) Developmental mode influences diversification in ascidians. Biol Lett 9:20130068. doi: 10.1098/rsbl.2013.0068 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution (N Y) 67:2240–2257. doi: 10.1111/evo.12105 Google Scholar
  29. Moreau CS, Bell CD, Vila R et al (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104. doi: 10.1126/science.1124891 CrossRefPubMedGoogle Scholar
  30. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062. doi: 10.1038/nature09205 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oliver TH, Leather SR, Cook JM (2008) Macroevolutionary patterns in the origin of mutualisms involving ants. J Evolut Biol 21:1597–1608. doi: 10.1111/j.1420-9101.2008.01600.x CrossRefGoogle Scholar
  32. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  33. Sasaki T, Granovskiy B, Mann RP et al (2013) Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it is easy. Proc Natl Acad Sci 110:13769–13773. doi: 10.1073/pnas.1304917110 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schmidt C (2013) Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647:201–250. doi: 10.11646/zootaxa.3647.2.1 CrossRefPubMedGoogle Scholar
  35. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Tschinkel WR (1991) Insect sociometry, a field in search of data. Insectes Soc 38:77–82. doi: 10.1007/BF01242715 CrossRefGoogle Scholar
  37. Tukey JW, McLaughlin DH (1963) Less vulnerable confidence and significance procedures for location based on a single sample: trimming/winsorization 1. Indian J Stat 25:331–352Google Scholar
  38. van Wilgenburg E, Torres CW, Tsutsui ND (2010) The global expansion of a single ant supercolony. Evolut Appl 3:136–143. doi: 10.1111/j.1752-4571.2009.00114.x CrossRefGoogle Scholar
  39. Ward PS, Brady SG, Fisher BL, Schultz TR (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Entomol 40:61–81. doi: 10.1111/syen.12090 CrossRefGoogle Scholar
  40. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  41. Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58:17–25. doi: 10.1641/B580106 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  1. 1.Department of Science and EducationField Museum of Natural HistoryChicagoUSA
  2. 2.Biological Sciences DivisionUniversity of ChicagoChicagoUSA

Personalised recommendations