Advertisement

Insectes Sociaux

, Volume 63, Issue 2, pp 279–290 | Cite as

Social interactions in the central nest of Coptotermes formosanus juvenile colonies

  • H. DuEmail author
  • T. Chouvenc
  • W. L. A. Osbrink
  • N.-Y. Su
Research Article

Abstract

Juvenile colonies of Coptotermes formosanus Shiraki were investigated to determine the social interactions among all individuals near the central nest of a colony. The behavioral repertoire of whole colonies of subterranean termites has yet to be identified because of their cryptic nests. Colonies were placed in planar arenas, and their behavioral repertoire and activities were recorded with video cameras. All castes and larval instars were determined and behavioral interactions were monitored and described, including feeding behaviors, grooming, nest maintenance, and inactivity. When two termites interacted, it was also determined which one was the donor or the recipient of the act. An ethogram was constructed by calculating relative frequency of each behavior for first instar larvae, second instar larvae, first instar workers, second instar workers or older, queen, king, soldiers and presoldiers. Larval instars, primary reproductives and soldiers were mostly passive during interactions. Workers performed most of the tasks; however, there was a difference of task divisions among worker instars. Young workers (W 1) performed most of the grooming of individuals in the central nest, while older workers (W 2+) provided nest maintenance and sanitation, by collecting fecal matter from most nest mates. In addition, older workers were mostly in charge of caring for the primary reproductives and the maintenance of the royal chamber. This study identified instar-specific activities and provides a first insight into caste and age polyethism in C. formosanus.

Keywords

Trophallaxis Proctodeal feeding Stomodeal feeding Wood consumption Grooming Brood care 

Notes

Acknowledgments

We thank R. Pepin for technical assistance and Aaron Mullins and two anonymous reviewers for useful comments.

Supplementary material

40_2016_464_MOESM1_ESM.pdf (293 kb)
Supplementary material 1 The Electronic Supplementary Material (ESM 1) includes the description of all behaviors observed in juvenile colonies of Copototermes formosanus, additional references, and the supplementary Figure S1. (PDF 293 kb)

References

  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Arnold G, Grassia A (1982) Ethogram of agonistic behaviour for thoroughbred horses. Appl Anim Ethol 8:5–25CrossRefGoogle Scholar
  3. Ayayee PA, Jones SC, Sabree ZL (2015) Essential amino acid provisioning by termite-associated gut microbiota. Peer J 3:e1357CrossRefGoogle Scholar
  4. Bardunias P, Su NY (2009) Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Anim Behav 78:755–759CrossRefGoogle Scholar
  5. Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220CrossRefGoogle Scholar
  6. Camargo R, Forti L, Lopes J, Andrade A, Ottati A (2007) Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). J Appl Entomol 131:139–145CrossRefGoogle Scholar
  7. Chouvenc T, Su NY (2010) Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events: limits and potential for biological control. J Econ Entomol 103:1327–1337CrossRefPubMedGoogle Scholar
  8. Chouvenc T, Su NY (2012) When subterranean termites challenge the rules of fungal epizootics. PLoS ONE 7:e34484CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chouvenc T, Su NY (2014) Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insect Soc 61:171–182CrossRefGoogle Scholar
  10. Chouvenc T, Bardunias P, Li HF, Elliott ML, Su NY (2011) Planar arenas for use in laboratory bioassay studies of subterranean termites (Rhinotermitidae). Florida Entomol 94:817–826CrossRefGoogle Scholar
  11. Chouvenc T, Efstathion CA, Elliott ML, Su NY (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Roy Soc Lond B 280:20131885. doi: 10.1098/rspb.2013.1885 CrossRefGoogle Scholar
  12. Chouvenc T, Basille M, Su NY (2015a) The production of soldiers and the maintenance of caste proportions delay the growth of termite incipient colonies. Insect Soc 62:23–29CrossRefGoogle Scholar
  13. Chouvenc T, Mullins AJ, Su NY (2015b) Rare production of nymphs in an Asian subterranean termite (Isoptera: Rhinotermitidae) incipient colony. Florida Entomol 98:972–973CrossRefGoogle Scholar
  14. Chouvenc T, Li HF, Austin J, Bordereau C, Bourguignon T, Su NY (2016) Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of an economically important subterranean termite genus. Syst Entomol. doi: 10.1111/syen.12157 Google Scholar
  15. Crosland MWJ, Su NY (2006) Work allocation among castes in a Rhinotermitid termite (Isoptera)—are nymphs a working caste? Sociobiology 48:585–598Google Scholar
  16. Crosland MWJ, Lok CM, Wong TC, Shakarad M, Traniello JFA (1997) Division of labour in a lower termite: the majority of tasks are performed by older workers. Anim Behav 54:999–1012CrossRefPubMedGoogle Scholar
  17. Crosland MWJ, Ren SX, Traniello JFA (1998) Division of labour among workers in the termite, Reticulitermes fukienensis (Isoptera: Rhinotermitidae). Ethology 104:57–67CrossRefGoogle Scholar
  18. Dinesh AS, Venkatesha MG (2013) Analysis of the territorial, courtship and coupling behavior of the hemipterophagous butterfly, Spalgis epius (Westwood) (Lepidoptera: Lycaenidae). J Insect Behav 26:149–164CrossRefGoogle Scholar
  19. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Ann Rev Entomol 58:455–474CrossRefGoogle Scholar
  20. Fresneau D, Dupuy P (1988) A study of polyethism in a ponerine ant: Neoponera apicalis (Hymenoptera, formicidae). Anim Behav 36:1389–1399CrossRefGoogle Scholar
  21. Grassé PP (1949) Ordre des Isoptères ou termites. Traité de Zoologie 9:408–544Google Scholar
  22. Grassé PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insect Soc 6:41–80CrossRefGoogle Scholar
  23. Grassé PP, Noirot C (1945) La transmission des flagellés symbiotiques et les aliments des termites. Bull Biol France Belg 79:273–292Google Scholar
  24. Herbers JM (1983) Social organization in Leptothorax ants: within-and between-species patterns. Psyche 90:361–386CrossRefGoogle Scholar
  25. Herbers JM, Cunningham M (1983) Social organization in Leptothorax longispinosus Mayr. Anim Behav 31:759–771CrossRefGoogle Scholar
  26. Higa SY (1981) Flight, colony foundation, and development of the gonads of the primary reproductives of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Ph.D. dissertation, University of Hawaii, HonoluluGoogle Scholar
  27. Indrayani Y, Yoshimura T, Yanase Y, Fujii Y, Matsuoka H, Imamura Y (2007) Observation of feeding behavior of three termite (Isoptera) species: Incisitermes minor, Coptotermes formosanus, and Reticulitermes speratus. Sociobiology 49:121–134Google Scholar
  28. Jayasuriya A, Traniello JFA (1985) The biology of the primitive ant Aneuretus simoni (Emery) (Formicidae: Aneuretinae) I. Distribution, abundance, colony structure, and foraging ecology. Insect Soc 32:363–374CrossRefGoogle Scholar
  29. Kasuya E (1983) Behavioral ecology of Japanese paper wasps, Polistes spp. (Hymenoptera: Vespidae). Zeitschrift fuer Tierpsychologie 63:303–317CrossRefGoogle Scholar
  30. Kolmes SA (1985) A quantitative study of the division of labour among worker honey bees. Zeitschrift für Tierpsychologie 68:287–302CrossRefGoogle Scholar
  31. Korb J, Buschmann M, Schafberg S, Liebig J, Bagnères AG (2012) Brood care and social evolution in termites. Proc Roy Soc Lond B 279:2662–2671CrossRefGoogle Scholar
  32. Lee SH, Yang RL, Su NY (2008) Surface irregularity induced-tunneling behavior of the Formosan subterranean termite. Behav Proc 78:473–476CrossRefGoogle Scholar
  33. Li HF, Su NY (2008) Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 101:456–462CrossRefGoogle Scholar
  34. Li HF, Yang RL, Su NY (2010) Interspecific competition and territory defense mechanisms of Coptotermes formosanus and Coptotermes gestroi (Isoptera: Rhinotermitidae). Environ Entomol 39:1601–1607CrossRefPubMedGoogle Scholar
  35. Lüscher M (1974) Kasten und kastendifferenzierung bei niederen termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694–739Google Scholar
  36. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Nat Acad Sci 107:12963–12968CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nalepa C, Bignell D, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201CrossRefGoogle Scholar
  38. Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 233–282Google Scholar
  39. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, New Jersey 352p Google Scholar
  40. Pickens A (1934) The biology and economic significance of the western subterranean termite, Reticulitermes hesperus. In: Kofoid CA (ed) Termites and termite control. University of California Press, Berkeley, pp 157–183Google Scholar
  41. Raina A, Park YI, Florane C (2003) Behavior and reproductive biology of the primary reproductives of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 41:37–48Google Scholar
  42. Rosengaus RB, Traniello JFA (1991) Biparental care in incipient colonies of the dampwood termite Zootermopsis angusticollis Hagen (Isoptera: Termopsidae). J Insect Behav 4:633–647CrossRefGoogle Scholar
  43. Rosengaus RB, Traniello JFA, Bulmer MS (2011) Ecology, behavior and evolution of disease resistance in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 165–191Google Scholar
  44. Rust MK, Su NY (2012) Managing social insects of urban importance. Ann Rev Entomol 57:355–375CrossRefGoogle Scholar
  45. Sade DS (1973) An ethogram for rhesus monkeys I. Antithetical contrasts in posture and movement. Am J Phys Anthrop 38:537–542CrossRefPubMedGoogle Scholar
  46. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRefGoogle Scholar
  47. Seeley TD, Kolmes SA (1991) Age polyethism for hive duties in honey bees—illusion or reality? Ethology 87:284–297CrossRefGoogle Scholar
  48. Shimizu K (1962) Analytical studies on the vitality of colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki. I. Analysis of the strength of vitality. Bull Faculty Agri Univ Miyazaki 8:106–110Google Scholar
  49. Springhetti A (1969) Il controllo sociale della differenziazione degli alati in Kalotermes flavicollis Fabr (Isoptera). Annali dell’Universita de Ferrara, Nuova Serie, Sezione III, Biologia Animale 3:73–96Google Scholar
  50. Stevenson MF, Poole TB (1976) An ethogram of the common marmoset (Calithrix jacchus jacchus): general behavioural repertoire. Anim Behav 24:428–451CrossRefPubMedGoogle Scholar
  51. Su NY (1982) An ethological approach to the remedial control of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Ph.D. dissertation, University of Hawaii, HonoluluGoogle Scholar
  52. Su NY, Lee SH (2009) Tunnel volume regulation and group size of subterranean termites (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 102:1158–1164CrossRefGoogle Scholar
  53. Su NY, Scheffrahn RH (1988) Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology 14:353–360Google Scholar
  54. Su NY, Scheffrahn RH (1998) A review of subterranean termite control practices and prospects for integrated pest management programmes. Integr Pest Manag Rev 3:1–13CrossRefGoogle Scholar
  55. Watanabe D, Matsunami M, Hayashi Y, Yaguchi H, Shigenobu S, Miura T, Maekawa K (2014) Transcriptomics on social interactions in termites: effects of soldier presence. 7th Congress of the International Union for the Study of Social Insects (IUSSI), Cairns, AustraliaGoogle Scholar
  56. Watson JAL, McMahan EA (1978) Polyethism in the australian harvester Termite Drepanotermes (Isoptera, Termitinae). Insect Soc 25:53–62CrossRefGoogle Scholar
  57. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  58. Wilson EO (1976) A social ethogram of the neotropical arboreal ant Zacryptocerus varians (Fr. Smith). Anim Behav 24:354–363CrossRefGoogle Scholar
  59. Wilson EO, Fagen RM (1974) On the estimation of total behavioral repertories in ants. J New York Entomol Soc 82:106–112Google Scholar
  60. Xing L, Chouvenc T, Su NY (2013) Molting process in the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 106:619–625CrossRefGoogle Scholar
  61. Yang RL, Su NY, Bardunias P (2009) Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 102:906–910CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  • H. Du
    • 1
    Email author
  • T. Chouvenc
    • 1
  • W. L. A. Osbrink
    • 2
  • N.-Y. Su
    • 1
  1. 1.Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural SciencesUniversity of FloridaFt. LauderdaleUSA
  2. 2.Knipling-Bushland U.S. Livestock Insects Research LabUSDA Agricultural Research ServiceKerrvilleUSA

Personalised recommendations