Insectes Sociaux

, Volume 63, Issue 2, pp 249–256 | Cite as

Low relatedness and frequent inter-nest movements in a eusocial sweat bee

  • N. Brand
  • M. ChapuisatEmail author
Research Article


Halictid bees are good systems for studying the evolution and maintenance of eusociality, because they form small societies where females have multiple behavioural options (stay or leave, reproduce or help). Here, we investigate colony organization, inter-nest movements and patterns of reproduction in Halictus scabiosae, a species where foundresses rear a first brood of females that often behave as helpers to rear a second brood. Using non-destructive sampling and microsatellite genotyping, we monitored the genotypic composition of a sample of colonies over the entire reproductive season, which allowed us to reconstruct sibships and infer parentage within and across colonies. We detected that foundresses and females from the first brood often moved to foreign colonies. Moreover, foundresses were frequently replaced. At least 5 % of the females from the first brood reproduced. Eight of the ten cases of reproduction by first brood females occurred in foreign colonies. Because of extensive bee movements, many colonies contained offspring from unrelated individuals. The average genetic relatedness among bees sampled from the same colony was moderate (0.33 ± 0.02). The relatedness of the second brood to their colony foundresses and first brood females was only 0.14 and 0.21, respectively. The labile colony membership decreases the intra-colony relatedness and thus the inclusive fitness of helpers, but the behavioural flexibility of these bees may allow them to cope with variable environmental constraints.


Social evolution Helping behaviour Eusociality Drifting Halictid bees 



We thank Nelly di Marco, Vuk Zrelec, Joris Bressan, Sophie Berset, Michiel B. Djikstra, Thomas Martignier, Jérémie Projer, Aude Rogivue, Andrès Salazar Jaramillo, Luc Dolivo, Georg Hoffmann and Anabelle Reber for help in the field or the lab, Michiel B. Djikstra for discussions on experimental setup, Gerald Heckel, Nicolas Perrin, Adam L. Cronin and anonymous reviewers for comments on the manuscript. This study was supported by Grant 31003A_146641 from the Swiss National Science Foundation, as well as by Grants from the Fondation Herbette and the Société Académique Vaudoise.

Supplementary material

40_2015_460_MOESM1_ESM.pdf (299 kb)
Supplementary material 1 (PDF 300 kb)


  1. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383CrossRefGoogle Scholar
  2. Batra SWT (1966) Nesting behavior of Halictus scabiosae in Switzerland (Hymenoptera Halictidae). Ins Soc 13:87–92CrossRefGoogle Scholar
  3. Blacher P, Yagound B, Lecoutey E, Devienne P, Chameron S, Châline N (2013) Drifting behaviour as an alternative reproductive strategy for social insect workers. Proc R Soc B 280:20131888CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bourke AFG (2011) The validity and value of inclusive fitness theory. Proc R Soc B 278:3313–3320. doi: 10.1098/Rspb.2011.1465 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brand N, Chapuisat M (2012) Born to be bee, fed to be worker? The caste system of a primitively eusocial insect. Front Zool 9:35. doi: 10.1186/1742-9994-9-35 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brand N, Chapuisat M (2014) Impact of helpers on colony productivity in a primitively eusocial bee. Behav Ecol Sociobiol 68:291–298. doi: 10.1007/s00265-013-1644-0 CrossRefGoogle Scholar
  7. Chapuisat M, Keller L (1999) Extended family structure in the ant Formica paralugubris: the role of the breeding system. Behav Ecol Sociobiol 46:405–412CrossRefGoogle Scholar
  8. Chapuisat M, Bocherens S, Rosset H (2004) Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58:1064–1072CrossRefPubMedGoogle Scholar
  9. Charnov EL (1978) Evolution of eusocial behavior: offspring choice or parental parasitism. J Theor Biol 75:451–465CrossRefPubMedGoogle Scholar
  10. Crespi BJ, Yanega D (1995) The definition of eusociality. Behav Ecol 6:109–115CrossRefGoogle Scholar
  11. Cronin AL, Schwarz MP (1997) Sex ratios, local fitness enhancement and eusociality in the allodapine bee Exoneura richardsoni. Evol Ecol 11:567–577CrossRefGoogle Scholar
  12. Field J, Cant MA (2009) Social stability and helping in small animal societies. Phil Trans R Soc B 364:3181–3189CrossRefPubMedPubMedCentralGoogle Scholar
  13. Field J, Cronin A, Bridge C (2006) Future fitness and helping in social queues. Nature 441:214–217CrossRefPubMedGoogle Scholar
  14. Gogala A (1991) Initiation of new nests in a social bee Halictus scabiosae Rossi (Hymenoptera: Halictidae). Opusc Zool Flumin 67:1–7Google Scholar
  15. Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–52CrossRefPubMedGoogle Scholar
  16. Hogendoorn K, Schwarz MP (1998) Guarding specialisation in pre-reproductive colonies of the allodapine bee Exoneura bicolor. Ethol Ecol Evol 10:67–77CrossRefGoogle Scholar
  17. Holehouse KA, Hammond RL, Bourke AFG (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics. Ins Soc 50:277–285CrossRefGoogle Scholar
  18. Hoy M (2003) Insect molecular genetics—an introduction to principles and applications. Elsevier Academic Press, San DiegoGoogle Scholar
  19. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216CrossRefPubMedGoogle Scholar
  20. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Res 10:551–555. doi: 10.1111/j.1755-0998.2009.02787.x CrossRefGoogle Scholar
  21. Kapheim KM, Bernal SP, Smith AR, Nonacs P, Wcislo WT (2011) Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae). Behav Ecol Sociobiol 65:1179–1190. doi: 10.1007/S00265-010-1131-9 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Keller L, Chapuisat M (1999) Cooperation among selfish individuals in insect societies. Bioscience 49:899–909CrossRefGoogle Scholar
  23. Knerer G, Plateaux-Quénu C (1967) Usurpation de nids étrangers et parasitisme facultatif chez Halictus scabiosae (Rossi) (Insecte Hymenoptère). Ins Soc 14:47–50CrossRefGoogle Scholar
  24. Leadbeater E, Carruthers JM, Green JP, Rosser NS, Field J (2011) Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333:874–876. doi: 10.1126/Science.1205140 CrossRefPubMedGoogle Scholar
  25. Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560CrossRefPubMedGoogle Scholar
  26. Michener CD, Brothers DJ (1974) Were workers of eusocial hymenoptera initially altruistic or oppressed? Proc Natl Acad Sci USA 71:671–674CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mueller UG, Wolfmueller B (1993) A method for estimating the age of bees: age-dependent wing wear and coloration in the wool-carder bee Anthidium manicatum (Hymenoptera, Megachilidae). J Insect Behav 6:529–537CrossRefGoogle Scholar
  28. Nonacs P, Reeve HK (1993) Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behav Proc 30:47–60CrossRefGoogle Scholar
  29. Packer L (1986) The biology of a subtropical population of Halictus ligatus IV: a cuckoo-like caste. J NY Entomol Soc 94:458–466Google Scholar
  30. Paxton RJ, Ayasse M, Field J, Soro A (2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Mol Ecol 11:2405–2416CrossRefPubMedGoogle Scholar
  31. Peso M, Richards MH (2011) Not all who wander are lost: nest fidelity in Xylocopa virginica examined by mark recapture. Ins Soc 58:127–133CrossRefGoogle Scholar
  32. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 242:258–275CrossRefGoogle Scholar
  33. Queller DC, Zacchi F, Cervo R, Turillazzi S, Henshaw MT, Santorelli LA, Strassmann JE (2000) Unrelated helpers in a social insect. Nature 405:784–787CrossRefPubMedGoogle Scholar
  34. Ratnieks FLW, Wenseleers T (2008) Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol Evol 23:45–52. doi: 10.1016/j.tree.2007.09.013 CrossRefPubMedGoogle Scholar
  35. Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581–608CrossRefPubMedGoogle Scholar
  36. R Development Core Team (2011) R: a language and environment for statistical computing., Vienna, Austria
  37. Rehan SM, Schwarz MP, Richards MH (2011) Fitness consequences of ecological constraints and implications for the evolution of sociality in an incipiently social bee. Biol J Linn Soc 103:57–67. doi: 10.1111/J.1095-8312.2011.01642.X CrossRefGoogle Scholar
  38. Rehan SM, Rotella A, Onuferko TM, Richards MH (2013) Colony disturbance and solitary nest initiation by workers in the obligately eusocial sweat bee, Halictus ligatus. Ins Soc 60:389–392. doi: 10.1007/S00040-013-0304-8 CrossRefGoogle Scholar
  39. Rehan SM, Richards MH, Adams M, Schwarz MP (2014) The costs and benefits of sociality in a facultatively social bee. Anim Behav 97:77–85. doi: 10.1016/j.anbehav.2014.08.021 CrossRefGoogle Scholar
  40. Richards MH, Packer L, Seger J (1995) Unexpected patterns of parentage and relatedness in a primitively eusocial bee. Nature 373:239–241CrossRefGoogle Scholar
  41. Richards MH, von Wettberg EJ, Rutgers AC (2003) A novel social polymorphism in a primitively eusocial bee. Proc Natl Acad Sci USA 100:7175–7180CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schwarz MP (1988) Local resource enhancement and sex ratios in a primitively social bee. Nature 331:346–348CrossRefGoogle Scholar
  43. Schwarz MP, Richards MH, Danforth BN (2007) Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Annu Rev Entomol 52:127–150CrossRefPubMedGoogle Scholar
  44. Schwarz MP, Tierney SM, Rehan SM, Chenoweth LB, Cooper SJB (2011) The evolution of eusociality in allodapine bees: workers began by waiting. Biol Lett 7:277–280. doi: 10.1098/rsbl.2010.0757 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Smith AR, Wcislo WT, O’Donnell S (2007) Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav Ecol Sociobiol 61:1111–1120CrossRefGoogle Scholar
  46. Soro A, Ayasse M, Zobel MU, Paxton RJ (2009) Complex sociogenetic organization and the origin of unrelated workers in a eusocial sweat bee, Lasioglossum malachurum. Ins Soc 56:55–63CrossRefGoogle Scholar
  47. Tibbetts EA, Reeve HK (2003) Benefits of foundress associations in the paper wasp Polistes dominulus: increased productivity and survival, but no assurance of fitness returns. Behav Ecol 14:510–514CrossRefGoogle Scholar
  48. Turillazzi S, West-Eberhard MJ (1996) Natural history and evolution of paper-wasps. Oxford University Press, OxfordGoogle Scholar
  49. Ulrich Y, Perrin N, Chapuisat M (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Mol Ecol 18:1791–1800. doi: 10.1111/j.1365-294X.2009.04154.x CrossRefPubMedGoogle Scholar
  50. Wang JL (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979CrossRefPubMedPubMedCentralGoogle Scholar
  51. West-Eberhard MJ (1967) Foundress association in Polistine wasps: dominance hierarchies and the evolution of social behavior. Science 1157:1584–1585CrossRefGoogle Scholar
  52. Yagi N, Hasegawa E (2012) A halictid bee with sympatric solitary and eusocial nests offers evidence for Hamilton’s rule. Nat Commun 3. doi: 10.1038/Ncomms1939
  53. Zobel MU, Paxton RJ (2007) Is big the best? Queen size, usurpation and nest closure in a primitively eusocial sweat bee (Lasioglossum malachurum). Behav Ecol Sociobiol 61:435–447CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  1. 1.Department of Ecology and Evolution, Biophore, UNIL-SorgeUniversity of LausanneLausanneSwitzerland

Personalised recommendations