Insectes Sociaux

, Volume 62, Issue 1, pp 73–80

Isometric worker size variation in relation to individual foraging preference and seasonal colony growth in stingless bees

  • J. J. G. Quezada-Euán
  • W. de J. May-Itzá
  • E. Montejo
  • H. Moo-Valle
Research Article

Abstract

Isometric worker size variation has been found in various species of stingless bees but the adaptive value of this phenomenon is little understood. We studied intra-colony worker size variation in Melipona in relation to individual foraging preference and colony growth in periods of resource abundance and scarcity. We found significant forager size differences across colonies. In spite of this, intra-colony size of foragers collecting different resources was highly similar, suggesting that foraging preferences and flexibility are size constrained. On the other hand, inter-colony forager size was associated with parameters of colony growth, albeit differently, depending on the season. Our results suggest that isometric forager size may reflect the state of food storage, and thus, colony development in stingless bees. It seems that stingless bee communities respond to seasonal abundance and scarcity with variable cycles of individual colony growth and reduction of reserves that may explain the asynchronous reproduction of colonies, spanning years in these insects.

Keywords

Worker size Foraging preference Colony growth Stingless bees Melipona 

Supplementary material

40_2014_376_MOESM1_ESM.docx (31 kb)
Supplementary material (DOCX 32 kb)

References

  1. Abdellatif A. 1965. Comb cell size and its effects on the body weight of the worker bee Apis mellifera L. Am. Bee J. 105: 86–87Google Scholar
  2. Biesmeijer J.C. and Tóth E. 1998. Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae). Insect. Soc. 45: 427–443Google Scholar
  3. Biesmeijer J.C., van Nieuwstadt M.G.L., Lukács S. and Sommeijer M.J. 1998. The role of internal and external information in foraging decisions of Melipona workers (Hymenoptera: Meliponinae). Behav. Ecol. Sociobiol. 42: 107–116Google Scholar
  4. Bullock S.H. 1999. Relationships among body size, wing size and mass in bees from a tropical dry forest in Mexico. J. Kansas Entomol. Soc. 72: 426–439Google Scholar
  5. Chinh T.X., Grob G.B.J., Meeuwsen F.J.A.J. and Sommeijer M.J. 2003. Patterns of male production in the stingless bee Melipona favosa (Apidae, Meliponini). Apidologie 34: 161–170Google Scholar
  6. Contrera F.A.L., Imperatriz-Fonseca V.L. and Koedam D. 2006. Age-dependent mass variation in the stingless bee Melipona quadrifasciata (Apidae, Meliponini) Braz. J. Morphol. Sci. 23: 321–324Google Scholar
  7. Couvillon M.J. and Dornhaus A. 2010. Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters. Insect. Soc. 57: 193–197Google Scholar
  8. Gary N.E. and Lorenzen K. 1976. A method for collecting the honey-sac contents from honeybees. J. Apic. Res. 15: 73–79Google Scholar
  9. Goulson D., Derwent L.C. and Peat J. 2005. Evidence for alloethism in stingless bees (Meliponinae). Apidologie 36: 411–412Google Scholar
  10. Gouws J., Gaston K.J. and Chown S.L. 2011. Intraspecific body size frequency distributions of insects. PLoS ONE 6: e16606. doi:10.1371/journal.pone.0016606Google Scholar
  11. Grüter C., Menezes C., Imperatriz-Fonseca V.L. and Ratnieks F.L.W. 2012. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proc. Natl Acad. Sci. USA Early edition. www.pnas.org/cgi/doi/10.1073/pnas.1113398109
  12. Hofstede F.E. and Sommeijer M.J. 2006. Effect of food availability on individual foraging specialisation in the stingless bee Plebeia tobagoensis (Hymenoptera, Meliponini). Apidologie 37: 387–397Google Scholar
  13. Kaspari M. and Vargo E.L. 1995. Colony size as a buffer against seasonality: Bergmann’s Rule in social insects. Am. Nat. 145: 610–632Google Scholar
  14. Kerr W.E. and Hebling N.J.1964. Influence of the weight of worker bees on division of labor. Evolution 18: 267–270Google Scholar
  15. Khoury D.S., Barron A.B. and Myerscough M.R. 2013. Modelling food and population dynamics in honey bee colonies. PLoS ONE 8: e59084. doi:10.1371/journal.pone.0059084Google Scholar
  16. Kuhn-Neto B., Contrera F.A.L., Castro M.S. and Nieh J.C. 2009. Long distance foraging and recruitment by a stingless bee, Melipona mandacaia. Apidologie 40: 472–480Google Scholar
  17. Levin M.D. and Haydak M.H. 1951. Seasonal variations in weight and ovarian development in worker honeybees. J. Econ. Entomol. 44: 54–57Google Scholar
  18. Milne C.P. Jr. 1980. Laboratory measurement of honey production in the honeybee. 3. Pupal weight of the worker. J. Apic. Res. 19: 176–178Google Scholar
  19. Milne C.P. Jr. and Pries K.J. 1984. Honey bee corbicular size and honey production. J. Apic. Res. 23: 11–14Google Scholar
  20. Moo-Valle H., Quezada-Euan J.J.G. and Wenseleers T. 2001. The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insect. Soc. 48: 398–403Google Scholar
  21. Nieh J.C., Contrera F.A.L., Rangel J. and Imperatriz-Fonseca V.L. 2003. Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav. Ecol. Sociobiol. 55: 87–94Google Scholar
  22. Oliveira M.A.C. 1973. Um método para a avaliação das atividades de vôo em Plebeia saiqui (Friese) (Hymenoptera, Meliponinae). Bolm. Zool. Biol. 30: 625–631Google Scholar
  23. Quezada-Euán J.J.G. 2005. Biología y uso de las abejas nativas sin aguijón de la Península de Yucatán, México (Hymenoptera: Meliponini). Ediciones de la Universidad Autónoma de Yucatán, Mérida México.Google Scholar
  24. Quezada-Euán J.J.G., Paxton R.J., Palmer K.A., May-Itzá W. de J., Tay W.T. and Oldroyd B.P. 2007. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae, Meliponini). Apidologie 38: 247–258Google Scholar
  25. Quezada-Euán J.J.G., May-Itzá W.J., Valladares P. and De la Rúa P. 2008. Variación fenotípica en obreras y su relación con la producción de miel en colonias de Melipona beecheii B. (Hymenoptera: Meliponini). In: Memorias V Congreso Mesoamericano de abejas sin aguijón. Universidad Autónoma de Yucatán pp 106–112Google Scholar
  26. Quezada-Euán J.J.G., López-Velasco A., Pérez-Balam J., Moo-Valle H., Velazquez-Madrazo A. and Paxton R.J. 2011. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58: 31–38Google Scholar
  27. Ramalho M., Imperatriz-Fonseca V.L. and Giannini T.C. 1998. Within colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthioides Lepeletier (Apidae, Hymenoptera). Apidologie 29: 221–228Google Scholar
  28. Riveros A.J. and Gronenberg W. 2010. Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behav. Ecol. Sociobiol. 64: 955–966Google Scholar
  29. Robinson G.E. 1992. Regulation of division of labour in insect societies. Annu. Rev. Entomol. 37: 637–665Google Scholar
  30. Roubik D.W. 1982. Seasonality in colony food storage, brood production and adult survivorship: studies of Melipona in tropical forest (Hymenoptera: Apidae). J. Kansas Entomol. Soc. 55: 789–800Google Scholar
  31. Roubik D.W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, New York.Google Scholar
  32. Seeley T.D. 1995. The Wisdom of the Hive. Harvard University Press, Cambridge MassachusettsGoogle Scholar
  33. Sommeijer M.J. 1984. Distribution of labour among workers of Melipona favosa F: age polyethism and worker oviposition. Insect. Soc. 31: 171–184Google Scholar
  34. StatSoft, Inc. 2013. STA TISTICA Version 12. URL http://www.statsoft.com/
  35. Spaethe J. and Weidenmüller A. 2002. Size variation and foraging rate in bumblebees (Bombus terrestris). Insect. Soc. 49: 142–146Google Scholar
  36. Stephens M.A. 1974. EDF Statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69: 730–737Google Scholar
  37. Szabo T.I. 1980. Effect of weather factors on honey bee flight activity and colony weight gain. J. Apic. Res. 19: 164–171Google Scholar
  38. Szabo T.I. 1982. Phenotypic correlations between colony traits in the honey bee. Am. Bee J. 122: 711–716Google Scholar
  39. Szabo T.I. and Lefkovitch L.P. 1988. Fourth generation of closed population honeybee breeding 2. Relationship between morphological and colony traits. Apidologie 19: 259–274Google Scholar
  40. Veiga J.C., Menezes C., Venturieri G.C. and Contrera F.A.L. 2013. The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie 44: 324–333Google Scholar
  41. Waddington K.D. 1989. Implications of variation in worker body size for the honey bee recruitment system. J. Insect Behav. 2: 91–103Google Scholar
  42. Waddington K.D., Herbst L.H. and Roubik D.W. 1986. Relationship between recruitment systems of stingless bees and within-nest worker size variation. J. Kansas Entomol. Soc. 59: 95–102Google Scholar
  43. Wiley E.O. 1981. Phylogenetics: the Theory and Practice of Phylogenetic Systematics. Wiley, New York.Google Scholar
  44. Zárate O., de Araujo-Freitas C., Medina L.A., Velásquez A. and Quezada-Euán J.J.G. 2008. Phenotypic correlations of field and laboratory tests with honey production in Africanized honey bees (Apis mellifera L.). Apidologie 39: 523–530Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  • J. J. G. Quezada-Euán
    • 1
  • W. de J. May-Itzá
    • 1
  • E. Montejo
    • 1
  • H. Moo-Valle
    • 1
  1. 1.Campus de Ciencias Biológicas y Agropecuarias Departamento de ApiculturaUniversidad Autónoma de YucatánMeridaMexico

Personalised recommendations