Insectes Sociaux

, Volume 62, Issue 1, pp 59–71 | Cite as

Ant community organization along elevational gradients in a temperate ecosystem

  • A. Bernadou
  • X. Espadaler
  • A. Le Goff
  • V. Fourcassié
Research Article

Abstract

The aim of our study was to characterize the factors that shape the pattern of change in ant species richness and community structure along altitudinal gradients in two valleys located on the northern and southern side of the Pyrenees. During three summers, we sampled 20 sites distributed across two Pyrenean valleys ranging in elevation from 1,009 to 2,339 m using pitfall traps and hand collection. We employed diversity index, degree of nestedness of ant assemblages, ordination method, and multiple regression analysis to examine the effects of various environmental factors on ant species communities. In total, 41 ant species were found in the two valleys. The number of species was 26 % lower in the valley located on the northern side than in that located on the southern side. At the valley scale, the number of ant species, as well as the evenness, decreased with elevation. A significant nested pattern was observed, indicating that the species found in the poorest site represented a subset of those found at the richest one. Ants collected at mid- and high-elevation sites had a wider altitudinal range than those collected at low-elevation sites, thus complying with Rapoport’s rule. Our results suggest that, although elevation strongly influences the organization of ant communities, ecological factors such as temperature and local habitat features (sun exposure, vegetation density) are the main factors explaining the pattern of ant diversity along altitudinal gradients.

Keywords

Ants Community ecology Elevation gradient Andorra France Pyrenees 

Notes

Acknowledgments

We thank M. Leponce, J.-P. Lessard, L. Legal and P.S. Oliveira for constructive comments on previous versions of this paper. A.B. was financed by a doctoral grant from the Fundació Crèdit Andorra and by a grant “Germaine Cousin” from the French Entomological Society. Part of this work was supported by the program “Entomological Inventory of the Madriu-Perafita-Claror Valley” funded by the Department of Agriculture of the Principality of Andorra.

Supplementary material

40_2014_374_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2226 kb)

References

  1. Agosti D., Majer J.D., Alonso L.E. and Schultz T.R. 2000. ANTS - Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington and LondonGoogle Scholar
  2. Almeida-Neto M., Guimaraes P., Guimaraes P.R., Loyola R.D. and Ulrich W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227–1239Google Scholar
  3. Arnan X., Gracia M., Comas L. and Retana J. 2009. Forest management conditioning ground ant community structure and composition in temperate conifer forests in the Pyrenees Mountains. Forest Ecol. Manag. 258: 51–59Google Scholar
  4. Bernadou A., Céréghino R., Barcet H., Combe M., Espadaler X. and Fourcassié V. 2013a. Physical and land-cover variables influence ant functional groups and species diversity along elevational gradients. Landscape Ecol. 28: 1387–1400Google Scholar
  5. Bernadou A., Fourcassié V. and Espadaler X. 2013b. A preliminary checklist of the ants (Hymenoptera, Formicidae) of Andorra. ZooKeys 277: 13–23Google Scholar
  6. Bernard F. 1946. Notes sur les fourmis de France. II. Peuplement des montagnes méridionales. Ann. Soc. Entomol. Fr. 115: 1–36Google Scholar
  7. Brown L.E., Céréghino R. and Compin A. 2009. Endemic freshwater invertebrates from southern France: diversity, distribution, and conservation implications. Biol. Cons. 142: 2613–2619Google Scholar
  8. Brühl C.A., Mohamed V. and Linsenmair K.E. 1999. Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J. Trop. Ecol. 15: 265–277Google Scholar
  9. Burnham K.P and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer-VerlagGoogle Scholar
  10. Burnham K.P., Anderson D.R. and Huyvaert K.P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations and comparisons. Behav. Ecol. Sociobiol. 65: 23–35Google Scholar
  11. Casevitz-Weulersse J. and Galkowski C. 2009. Liste actualisée des fourmis de France (Hymenoptera, Formicidae). Bull. Soc. Entomol. Fr. 114: 475–510Google Scholar
  12. Cerda X., Retana J. and Cros S. 1998a. Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct. Ecol. 12: 45–55Google Scholar
  13. Cerda X., Retana J. and Manzaneda A. 1998b. The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117: 404–412Google Scholar
  14. Collingwood C.A. 1979. The Formicidae (Hymenoptera) of Fennoscandia and Denmark. Fauna Entomol. Scand. 8: 1–174Google Scholar
  15. Colwell R.K. 2005. EstimateS, Version 7.5: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware published at http://viceroy.eeb.uconn.edu/estimates.
  16. Deharveng L. 1996. Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France). Conserv. Biol. 10: 74–84Google Scholar
  17. Dunn R.R., Agosti D., Andersen A.N., Arnan X., Bruhl C.A., Cerda X., Ellison A.M., Fisher B.L., Fitzpatrick M.C., Gibb H., Gotelli N.J., Gove A.D., Guenard B., Janda M., Kaspari M., Laurent E.J., Lessard J.P., Longino J.T., Majer J.D., Menke S.B., McGlynn T.P., Parr C.L., Philpott S.M., Pfeiffer M., Retana J., Suarez A.V., Vasconcelos H.L., Weiser M.D. and Sanders N.J. 2009a. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol. Lett. 12: 324–333Google Scholar
  18. Dunn R.R., Guénard B., Weiser M.D. and Sanders N.J. 2009b. Geographic gradients. In: Ant Ecology (Lach L., Parr C. and Abbott K., Eds). Oxford University Press, pp 38–58Google Scholar
  19. Dutilleul P. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49: 305–314Google Scholar
  20. Espadaler X. 1979. Contribución al conocimiento de los Formícidos (Hymenoptera, Formicidae) del Pirineo Catalán. Dissertation, Universidad Autónoma de BarcelonaGoogle Scholar
  21. Fischer J. and Lindenmayer D.B. 2005. Perfectly nested or significantly nested—an important difference for conservation management. Oikos 109: 485–494Google Scholar
  22. Fridley J.D. 2009.Downscaling climate over complex terrain: high fine-scale spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains, USA). J. Appl. Meteorol. 48: 1033–1049Google Scholar
  23. Glaser F. 2006. Biogeography, diversity and vertical distribution of ants (Hymenoptera: Formicidae) in Vorarlberg, Austria. Myrmecol. News. 8: 263–270Google Scholar
  24. Gómez D., Sesé J.A. and Villar L. 2003. The vegetation of the alpine zone in the Pyrenees. In: Alpine Biodiversity in Europe (Nagy L., Grabherr G., Körner C. and Thompson D.B.A., Eds). Ecological Studies, Vol. 167, Springer-Verlag, Berlin, pp 85–92Google Scholar
  25. Gotelli N.J. and Colwell R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391Google Scholar
  26. Guimaraes P.R. and Guimaraes P. 2006. Improving the analyses of nestedness for large sets of matrices. Environ. Model. Softw. 21: 1512–1513Google Scholar
  27. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. and Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978Google Scholar
  28. Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge, MAGoogle Scholar
  29. Janzen D.H., Ataroff M., Farinas M., Reyes S., Rincon N., Soler A., Soriano P. and Vera M. 1976. Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8: 193–203Google Scholar
  30. Jenkins C.N., Sanders N.J., Andersen A.N., Arnan X., Brühl C.A., Cerda X., Ellison A.M., Fisher B.L., Fitzpatrick M.C., Gotelli N.J., Gove A.D., Guénard B., Lattke J.E., Lessard J.P., McGlynn T.P., Menke S.B., Parr C.L., Philpott S.M., Vasconcelos H.L., Weiser M.D. and Dunn R.R. 2011. Global diversity in light of climate change: the case of ants. Divers. Distrib. 17: 652–662Google Scholar
  31. Kaspari M., O’Donnell S. and Kercher J.R. 2000. Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am. Nat. 155: 280–293Google Scholar
  32. Kollmair M., Gurung G.S., Hurni K. and Maselli D. 2005. Mountains: special places to be protected? An Analysis of worldwide nature conservation efforts in mountains. J. Biodiv. Science Man. 1: 1–9Google Scholar
  33. Körner C. 2007. The use of `altitude’ in ecological research. Trends Ecol. Evol. 22: 569–574Google Scholar
  34. Körner C., Paulsen J. and Spehn E.M. 2011. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121: 73–78Google Scholar
  35. Kumschick S., Schmidt-Entlig M., Bacher S., Hickler T., Espadaler X. and Nentwig W. 2009. Determinants of local ant (Hymenoptera: Formicidae) species richness and activity density across Europe. Ecol. Entomol. 34: 748–754Google Scholar
  36. Lassau S.A., Cassis G., Flemons P.K.J., Wilkie L. and Hochuli D.F. 2005. Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28: 495–504Google Scholar
  37. Lassau S.A. and Hochuli D.F. 2004. Effects of habitat complexity on ant assemblages. Ecography 27: 157–164Google Scholar
  38. Lessard J.P., Borregaard M.K., Fordyce J.A., Rahbek C., Weiser M.D., Dunn R.R. and Sanders N.J. 2011. Strong influence of regional species pools on continent-wide structuring of local communities. Proc. R. Soc. Lond. B Biol. Sci. 279: 266–274Google Scholar
  39. Lessard J.P., Dunn R.R., Parker C.R. and Sanders N.J. 2007. Rarity and diversity in forest assemblages of the Great Smoky Mountain National Park. Southeast Nat. 6: 215–228Google Scholar
  40. Machac A., Janda M., Dunn R.R. and Sanders N.J. 2011. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34: 364–371Google Scholar
  41. Magurran A.E. 2004. Measuring Biological Diversity. Oxford, Blackwell PublishingGoogle Scholar
  42. Martinez Rica J.P. and Recoder M. 1990. Biogeographic features of the pyrenean range. Mt. Res. Dev. 10: 235–240Google Scholar
  43. Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A.B. and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858Google Scholar
  44. Oksanen J., Kindt R., Legendre P. and O’Hara R.B. 2005. vegan: Community Ecology Package. R package version 1.8–3, URL http://CRAN.R-project.org/
  45. Olson D.M. 1994. The distribution of leaf litter invertebrates along a neotropical altitudinal gradient. J. Trop. Ecol. 10: 129–150Google Scholar
  46. Osorio F. and Vallejos R. 2014. SpatialPack: Package for analysis of spatial data. R package version 0.2-3, URL: CRAN.R-project.org/package = SpatialPackGoogle Scholar
  47. Ovazza M. 1950. Contribution à la connaissance des fourmis des Pyrénées-Orientales. Récoltes de J. Hamon. Vie Milieu 1: 93–94Google Scholar
  48. Parr C.L. and Andersen A.N. 2008. Fire resilience of ant assemblages in long unburnt savanna of northern Australia. Austral. Ecol. 33: 830–838Google Scholar
  49. Patterson B.D. 1987. The principle of nested subsets and its implications for biological conservation. Conserv. Biol. 1: 323–334Google Scholar
  50. Peters M.K., Mayr A, Röder J., Sanders N.J. and Steffan-Dewenter I. 2014. Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. J. Biogeogr. (in press)Google Scholar
  51. Rahbek C. 2005. The role of spatial scale and the perception of large-scale species-richness pattern. Ecol. Lett. 8: 224–339Google Scholar
  52. Retana J. and Cerda X. 2000. Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123: 436–444Google Scholar
  53. Rodríguez-Gironés M.A. and Santamaría L. 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J. Biogeogr. 33: 924–935Google Scholar
  54. Sanders N.J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25: 25–32Google Scholar
  55. Sanders N.J., Dunn R.R., Fitzpatrick M.C., Carlton C.E., Pogue M.R., Parker C.R. and Simons T.R. 2010. A diversity of elevational diversity gradients. In: Data Mining for Global Trends in Mountain Biodiversity (Körner C. and Spehn E.M., Eds). CRC Press, pp 75–87Google Scholar
  56. Sanders N.J., Lessard J.P., Dunn R.R. and Fitzpatrick M.C. 2007.Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol. Biogeogr. 16: 640–649Google Scholar
  57. Sanders N.J., Moss J. and Wagner D. 2003. Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecol. Biogeogr. 12: 93–102Google Scholar
  58. Savolainen R., Vepsäläinen K. and Wuorenrinne H. 1989. Ant assemblages in the taiga biome: testing the role of territorial wood ants. Oecologia 81: 481–486Google Scholar
  59. Seifert B. 2007. Die Ameisen Mittel und Nordeuropas. Lutra verlagGoogle Scholar
  60. Sommer F. and Cagniant H. 1988a. Peuplements de fourmis des Albères Orientales (Pyrénées-Orientales, France) (Première partie). Vie Milieu 38: 189–200Google Scholar
  61. Sommer F. and Cagniant H. 1988b. Etude des peuplements de fourmis des Albères Orientales (Pyrénées-Orientales, France) (Seconde partie). Vie Milieu 38: 321–329Google Scholar
  62. Soulié J. 1962. Fourmis des Hautes-Pyrénées. Bull. Soc. hist. nat. Toulouse 97: 35–37Google Scholar
  63. Stevens G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 140: 893–911Google Scholar
  64. Sundqvist M.K., Sanders N.J. and Wardle D.A. 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44: 261–80Google Scholar
  65. Ulrich W., Almeida-Neto M. and Gotelli N.J. 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3–17Google Scholar
  66. Vasconcelos H.L., Vilhena J.M.S., Magnusson W.E. and Albernaz A.L.K.M. 2006. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33: 1348–1356Google Scholar
  67. Villar L. and Dendaletche C. 1994. Pyrenees. France, Spain and Andorra In: Centres of Plants Diversity: A Guide and Strategy for their Conservation (Davis S.D., Heywood V.H. and Hamilton A.C., Eds). Information Press, Oxford, pp 61–64Google Scholar
  68. Villar L., Sesé J.A., Goñi D., Fernández J.V., Guzmán D. and Catalán P. 1997. Sur la flore endémique et menacée des Pyrénées (Aragon et Navarre). Lagascalia 19: 637–684Google Scholar
  69. Whitaker D. and Christman M. 2014. clustsig: Significant Cluster Analysis. R package version 1.1. http://cran.r-project.org/web/packages/clustsig/index.html

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  • A. Bernadou
    • 1
    • 2
    • 4
  • X. Espadaler
    • 3
  • A. Le Goff
    • 1
    • 2
  • V. Fourcassié
    • 1
    • 2
  1. 1.Université de Toulouse, UPS Centre de Recherches sur la Cognition AnimaleToulouse Cedex 9France
  2. 2.CNRS Centre de Recherches sur la Cognition AnimaleToulouse Cedex 9France
  3. 3.Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Evolution, Behaviour and Genetics-Biology I, University of RegensburgRegensburgGermany

Personalised recommendations