Insectes Sociaux

, Volume 61, Issue 4, pp 357–365 | Cite as

Funnels, gas exchange and cliff jumping: natural history of the cliff dwelling ant Malagidris sofina

  • J. A. HelmsIVEmail author
  • C. Peeters
  • B. L. Fisher
Research Article


The Malagasy endemic ant Malagidris sofina (Bolton and Fisher 2014) nests on cliff faces in natural rock alcoves or clay banks. Colonies have single ergatoid queens and reproduce by fission. Each nest has a funnel-shaped entrance that projects horizontally from the cliff face. We examine three hypotheses for the function of the funnels—water exclusion, gas exchange and defense. Entrance funnels are relatively impermeable and divert water from nests, but simple tubes would achieve the same result. Consistent with the gas exchange hypothesis, projected funnel entrances likely increase gas exchange rates over sixfold compared to simple tubes and may increase air flow within the nest. Gas exchange may explain the recurrent evolution of funnel entrances in several ant lineages, especially among cliff dwelling species. We outline M. sofina defense responses to conspecifics and co-occurring ant species, and find no support for a defense role of entrance funnels. Workers display little aggression but respond to several species with an original form of nest defense––cliff jumping—in which workers drop off the cliff face while clinging to invaders and then return to their nest. M. sofina is a restricted range species under threat of extinction by habitat destruction. Its novel lifestyle underscores the urgency of exploration and conservation in a tropical biodiversity hotspot.


Cliff dwelling Cliff jumping Madagascar Malagidris sofina Nest entrance Nest ventilation 



We thank the Republic of Madagascar and local communities for allowing us to work on Galoko. The fieldwork on which this study is based could not have been completed without the gracious support of the Malagasy people and the Arthropod Inventory Team (Balsama Rajemison, Jean Claude Rakotonirina, Jean-Jacques Rafanomezantsoa, Chrislain Ranaivo, Hanitriniana Rasoazanamavo, Nicole Rasoamanana, Clavier Randrianandrasana). Rosemary Knapp at the University of Oklahoma granted us the use of her lab. Flavia Esteves provided a helpful reference. The expedition was funded in part by National Science Foundation Grant No DEB-0842395. JAH is funded by a National Science Foundation Graduate Research Fellowship and a University of Oklahoma Alumni Fellowship.

Supplementary material

Supplementary material 1 (MP4 44462 kb)


  1. AntWeb 2014. Accessed 23 January 2014
  2. Bolton B. and Fisher B.L. 2014. The Madagascan endemic myrmicine ants related to Eutetramorium (Hymenoptera: Formicidae): taxonomy of the genera Eutetramorium Emery, Malagidris nom. n., Myrmisaraka gen. n., Rovidris gen. n., and Vitsika gen. n. Zootaxa 3791: 1-99Google Scholar
  3. Callmander M.W., Buerki S. and Wolhauser S. 2008. A new threatened species of Pandanaceae from Northwestern Madagascar, Pandanus sermolliana. Novon 18: 421-424Google Scholar
  4. Callmander M.W., Rakotovao C., Razafitsalama J., Phillipson P.B., Buerki S., Hong-Wa C., Rakotoarivelo N., Andriambololonera S., Koopman M.M., Johnson D.M., Deroin T., Ravoahangy A., Solo S., Labat J. and Lowry P.P. II 2009. New species from the Galoka and Kalabenono massifs: two unknown and severely threatened mountainous areas in NW Madagascar. Candollea 64: 179-202Google Scholar
  5. Cronin A., Molet M., Doums C., Monnin T. and Peeters C. 2013. Recurrent evolution of dependent colony foundation across eusocial insects. Annu. Rev. Entomol. 58: 37-55Google Scholar
  6. Cox M.D. and Blanchard G.B. 2000. Gaseous templates in ant nests. J. Theor. Biol. 204: 223-238Google Scholar
  7. Crosland M.W.J. 1995. Nest and colony structure in the primitive ant, Harpegnathos venator (Smith) (Hymenoptera: Formicidae). Pan-Pac. Entomol. 71: 18-23Google Scholar
  8. Federle W., Rohrseitz K. and Hölldobler B. 2000. Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J. Exp. Biol. 203: 505-512Google Scholar
  9. Federle W., Baumgartner W. and Hölldobler B. 2004. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J. Exp. Biol. 206: 67-74Google Scholar
  10. Fisher B.L. 2003. Ants (Formicidae: Hymenoptera). In: The Natural History of Madagascar (Goodman S.M. and Benstead J.P., Eds), University of Chicago Press, Chicago. pp 811-819Google Scholar
  11. Ganzhorn J.U., Lowry P.P., Schatz G.E. and Sommer S. 2001. The biodiversity of Madagascar: one of the world’s hottest hotspots on its way out. Oryx 35: 346-348Google Scholar
  12. Goodman S.M. and Benstead J.P. 2005. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39: 73-77Google Scholar
  13. Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  14. Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65-70Google Scholar
  15. Howse P.E. 1966. Air movement and termite behaviour. Nature 210: 967-968Google Scholar
  16. Kleineidam C., Ernst R. and Roces F. 2001. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88: 301-305Google Scholar
  17. Kleineidam C. and Roces F. 2000. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insect. Soc. 47: 241-248Google Scholar
  18. Kleineidam C. and Tautz J. 1996. Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting ant Atta cephalotes. Naturwissenschaften 83: 566-568Google Scholar
  19. Legendre P. 2011. Lmodel2: Model II Regression. R package version 1.7-0. Accessed 27 January 2014
  20. Lighton J.R.B. and Fielden L.J. 1995. Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit and wait strategists. Physiol. Zool. 68: 43-62Google Scholar
  21. Longino J.T. 2005. Complex nesting behavior by two Neotropical species of the ant genus Stenamma (Hymenoptera: Formicidae). Biotropica 37: 670-675Google Scholar
  22. Lüscher M. 1961. Air conditioned termite nests. Sci. Am. 205: 138-145Google Scholar
  23. Martin P.J. 1991. Respiration of the ant Leptothorax unifasciatus (Hymenoptera, Formicidae) at individual and society levels. J. Insect Physiol. 37: 311-318Google Scholar
  24. McArdle B.H. 1988. The structural relationship: regression in biology. Can. J. Zool. 66: 2329-2339Google Scholar
  25. Mueller U.G. and Wcislo W.T. 1998. Nesting biology of the fungus-growing ant Cyphomyrmex longiscapus Weber (Attini, Formicidae). Insect. Soc. 45: 181-189Google Scholar
  26. Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858Google Scholar
  27. Peeters C. 2012. Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecol. News 16: 75-91Google Scholar
  28. Peeters C., Hölldobler B., Moffett M. and Musthak Ali T.M. 1994. “Wall-papering” and elaborate nest architecture in the ponerine ant Harpegnathos saltator. Insect. Soc. 41: 211-218Google Scholar
  29. Pérez-Ortega B., Fernández-Marín H., Loiácono M.S., Galgani P. and Wcislo W.T. 2010. Biological notes on a fungus-growing ant, Trachymyrmex cf. zeteki (Hymenoptera, Formicidae, Attini) attacked by a diverse community of parasitoid wasps (Hymenoptera, Diapriidae). Insect. Soc. 57: 317-322Google Scholar
  30. Porter S.D. and Tschinkel W.R. 1985. Fire ant polymorphism: the ergonomics of brood production. Behav. Ecol. Sociobiol. 16: 323-336Google Scholar
  31. R Core Team 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Accessed 27 January 2014
  32. Roubik D.W. 2006. Stingless bee nesting biology. Apidologie 37: 124-143Google Scholar
  33. Sendova-Franks A.B. and Franks N.R. 1995. Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Anim. Behav. 50: 121-136Google Scholar
  34. Shik J.Z., Donoso D.A. and Kaspari M. 2013. The life history continuum hypothesis links traits of male ants with life outside the nest. Entomol. Exp. Appl. 149: 99-109Google Scholar
  35. Tschinkel W.R. 1993. Resource allocation, brood production and cannibalism during colony founding in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 33: 209-223Google Scholar
  36. Tschinkel W.R. 2004. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4: 21Google Scholar
  37. Vogel S. 1994. Life in Moving Fluids: The Physical Biology of Flow, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  38. Vogel S., Ellington C.P. Jr and Kilgore D.L. Jr 1973. Wind-induced ventilation of the burrow of the prairie-dog, Cynomys ludovicianus. J. Comp. Physiol. 85: 1-14Google Scholar
  39. Vogt J.T. and Appel A.G. 1999. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45: 655-666Google Scholar
  40. Weir J.S. 1973. Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus (Rambur). J. Anim. Ecol. 42: 509-520Google Scholar
  41. Yanoviak S.P., Munk Y. and Dudley R. 2011. Evolution and ecology of directed aerial descent in arboreal ants. Integr. Comp. Biol. 51: 944-956Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OklahomaNormanUSA
  2. 2.Écologie et Sciences de l’Environnement, UMR CNRS 7818, Université Pierre Et Marie CurieParisFrance
  3. 3.Department of EntomologyCalifornia Academy of SciencesSan FranciscoUSA

Personalised recommendations