Insectes Sociaux

, Volume 61, Issue 4, pp 337–345 | Cite as

Cuticular lipids correlate with age and insemination status in queen honeybees

  • M. Babis
  • L. Holman
  • R. Fenske
  • M. L. Thomas
  • B. Baer
Research Article


Eusocial insects exhibit reproductive division of labour, in which one or a few queens perform almost all of the reproduction, while the workers are largely sterile and assist in rearing their siblings. Consequently, many of the colony’s tasks (e.g. nest construction and brood rearing) should be modulated depending on whether the queen is fertile. Here, we tested whether queens’ cuticular lipids could provide reliable signals of fertility in the honeybee Apis mellifera, as they do in other social Hymenoptera. Specifically, we tested whether cuticular lipids differ between virgin queens of different ages, and between queens exposed to different artificial insemination treatments being semen (sperm and seminal fluid), seminal fluid only or saline control. Using gas chromatography–mass spectrometry, we found 27 lipids: 21 different hydrocarbons, namely alkanes, alkenes and dienes, as well as six wax esters. The lipid profile changed dramatically in the first 10 days after eclosion, and there were differences in lipid composition between virgin and artificially inseminated queens. Insemination with semen, seminal fluid or saline did not result in distinct chemical profiles. Our findings indicate that the physical stimulus of insemination was responsible for the observed changes in the cuticular profile in honeybee queens. Our results demonstrate that cuticular lipid profiles encode information on queen age, fertility and mating status, which could in principle be utilised by workers and rival queens.


Artificial insemination Chemical communication Cuticular hydrocarbons Fertility signal Queen pheromone 



We were supported by the Australian Research Council (ARC) through a Queen Elizabeth II Fellowship and a Future Fellowship to BB, an ARC Linkage Project to BB and the ARC Centre of Excellence in Plant Energy Biology. We thank the honeybee keepers of Western Australia, especially Better Bees of Western Australia for providing the necessary honeybee material for this study. We also thank Tamara Hartke for statistical advice.

Supplementary material

40_2014_358_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Akino T., Yamamura K., Wakamura S. and Yamaoka R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39: 381–387Google Scholar
  2. Ayasse M., Marlovits T., Tengö J., Taghizadeh T. and Francke W. 1995. Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L. (Hymenoptera, Apidae)? Apidologie 26: 163–180Google Scholar
  3. Baer B., Heazlewood J.L., Taylor N.L., Eubel H. and Millar A.H. 2009. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9: 2085–2097Google Scholar
  4. Berger B., Camargo A.F. and da Cruz-Landim C. 2005. Effect of narcosis with CO2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Sociobiology 48: 261–270Google Scholar
  5. Blomquist G.J. and Bagnères A.-G. (Eds) 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, CambridgeGoogle Scholar
  6. Blum M.S. (Ed) 1992. Honey Bee Pheromones. The Hive and the Honey Bee. Dadant & Sons, Hamilton, IllinoisGoogle Scholar
  7. Brandstaetter A., Endler A. and Kleineidam C. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95: 601–608Google Scholar
  8. Breed M.D. 1998. Recognition pheromones of the honey bee. BioScience 48: 463–470Google Scholar
  9. Bruschini C., Cervo R., Cini A., Pieraccini G., Pontieri L., Signorotti L. and Turillazzi S. 2011. Cuticular hydrocarbons rather than peptides are responsible for nestmate recognition in Polistes dominulus. Chem. Senses 36: 715–723Google Scholar
  10. Copren K.A., Nelson L.J., Vargo E.L. and Haverty M.I. 2005. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol. Phylogenet. Evol. 35: 689–700Google Scholar
  11. Cronin A.L. and Monnin T. 2010. Self-sacrifice in ‘desperado’ contests between relatives. Front. Zool. 7: 27Google Scholar
  12. Crozier R.H. and Dix M.W. 1979. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4: 217–224Google Scholar
  13. Cuvillier-Hot V., Cobb M., Malosse C. and Peeters C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47: 485–493Google Scholar
  14. d’Ettorre P. and Heinze J. 2005. Individual recognition in ant queens. Curr. Biol. 15: 2170–2174Google Scholar
  15. da Cruz-Landim C., Patricio K. and Antonialli W.F.. 2006. Cell death and ovarian development in highly eusocial bees (Hymenoptera, Apidae): Caste differentiation and worker egg laying. Braz. J. Morphol. Sci. 23: 27–42Google Scholar
  16. Dani F.R. 2009. Cuticular lipids as semiochemicals in paper wasps and other social insects. Ann. Zool. Fennici 43: 500–514Google Scholar
  17. Dani F.R., Jones G.R., Corsi S., Beard R., Pradella D. and Turillazzi S. 2005. Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chem. Senses 30: 477–489Google Scholar
  18. Dapporto L., Fondelli L. and Turillazzi S. 2006. Nestmate recognition and identification of cuticular hydrocarbons composition in the swarm founding paper wasp Ropalidia opifex. Biochem. Syst. Ecol. 34: 617–625Google Scholar
  19. de Biseau J.C., Passera L., Daloze D. and Aron S. 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J. Insect Physiol. 50: 585–593Google Scholar
  20. Dietemann V., Peeters C., Liebig J., Thivet V. and Hölldobler B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl Acad. Sci. USA 100: 10341–10346Google Scholar
  21. Gibbs A.G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48: 391–400Google Scholar
  22. Grozinger C.M., Sharabash N.M., Whitfield C.W. and Robinson G.E. 2003. Pheromone-mediated gene expression in the honey bee brain. Proc. Natl Acad. Sci. USA 100: 14519–14525Google Scholar
  23. Holman L., Jørgensen C.G., Nielsen J. and d’Ettorre P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B. 277: 3793–3800Google Scholar
  24. Holman L., Lanfear R. and d’Ettorre P. 2013. The evolution of queen pheromones in the ant genus Lasius. J. Evol. Biol. 26: 1549–1558Google Scholar
  25. Hoover S.R., Keeling C., Winston M. and Slessor K. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90: 477–480Google Scholar
  26. Howard R.W. and Blomquist G.J. 2005. Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50: 371–393Google Scholar
  27. Kather R., Drijfhout F. and Martin S. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37: 205–212Google Scholar
  28. Keeling C.I., Slessor K.N., Higo H.A. and Winston M.L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl Acad. Sci. USA 100: 4486–4491Google Scholar
  29. Keller L. and Nonacs P.1993. The role of queen pheromones in social insects: queen control or queen signal? Anim. Behav. 45: 787–794Google Scholar
  30. Kocher S.D., Richard F.-J., Tarpy D.R. and Grozinger C.M. 2009. Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees. Behav. Ecol. 20: 1007–1014Google Scholar
  31. Kocher S.D., Richard F.J., Tarpy D.R. and Grozinger C.M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9: 232Google Scholar
  32. Kocher S.D., Tarpy D.R. and Grozinger C.M. 2010. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Ins. Mol. Biol. 19: 153–162Google Scholar
  33. Laidlaw H.H. and Page R.E. 1997. Queen Rearing and Bee Breeding. Wicwas Press, Cheshire, ConnecticutGoogle Scholar
  34. Le Conte Y. and Hefetz A. 2008. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53: 523–542Google Scholar
  35. Liebig J., Peeters C., Oldham N.J., Markstädter C. and Hölldobler B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl Acad. Sci. USA 97: 4124–4131Google Scholar
  36. Lockey K.H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Phys. B 89: 595–645Google Scholar
  37. Lorenzi M.C., Bagnères A.G. and Clément J.L. 1996. The Role of Cuticular Hydrocarbons in Social Insects: Is it the Same in Paper Wasps? In: Natural History and Evolution of Paper Wasps (Turillazzi S. and West-Eberhard M.J., Eds). Oxford University Press, Oxford, pp 178–189Google Scholar
  38. Mackenson O. 1964. Relation of semen volume to success in artificial inseminated of queen honey bees. J. Econ. Entomol. 57: 581–583Google Scholar
  39. Maisonnasse A., Alaux C., Beslay D., Crauser D., Gines C., Plettner E. and Le Conte Y. 2010. New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation? Front. Zool. 7: 18Google Scholar
  40. Mattila H.R., Reeve H.K. and Smith M.L. 2012. Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness. Curr. Biol. 22: 2027–2031Google Scholar
  41. Monnin T. 2006. Chemical recognition of reproductive status in social insects. Finn. Zool. Bot. Publ. Board 43: 515–530Google Scholar
  42. Mueller J.K., Eggert A.-K. and Elsner T. 2003. Nestmate recognition in burying beetles: The “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav. Ecol. 14: 212–220Google Scholar
  43. Niño E.L., Malka O., Hefetz A., Teal P., Hayes J. and Grozinger C.M. 2012. Effects of honey bee (Apis mellifera L.) queen insemination volume on worker behavior and physiology. J. Insect Physiol. 58: 1082–1089Google Scholar
  44. Niño E.L., Malka O., Hefetz A., Tarpy D.R. and Grozinger C.M. 2013. Chemical profiles of two pheromone glands are differentially regulated by distinct mating factors in honey bee queens (Apis mellifera.). PLoS ONE 8: e78637Google Scholar
  45. Nunes T.M., Nascimento F.S., Turatti I.C., Lopes N.P. and Zucchi R. 2008. Nestmate recognition in a stingless bee: Does the similarity of chemical cues determine guard acceptance? Anim. Behav. 75: 1165–1171Google Scholar
  46. Peeters C. and Liebig J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Organization of Insect Societies: From Genome to Sociocomplexity (Gadau J. and Fewell J., Eds). Harvard University Press, Cambridge, pp 220–242Google Scholar
  47. Peeters C., Monnin T. and Malosse C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. B. 266: 1323–1327Google Scholar
  48. Rangel J. and Seeley T.D. 2008. The signals initiating the mass exodus of a honeybee swarm from its nest. Anim. Behav. 76: 1943–1952Google Scholar
  49. Richard F.-J., Schal C., Tarpy D.R. and Grozinger C.M. 2011a. Effects of instrumental insemination and insemination quantity on dufour’s gland chemical profiles and vitellogenin expression in honey bee ueens (Apis mellifera). J. Chem. Ecol. 37: 1027–1036Google Scholar
  50. Richard F.-J., Tarpy D.R. and Grozinger C.M. 2007. Effects of insemination quantity on honey bee queen physiology. PLoS ONE 2: e980Google Scholar
  51. Richard F.-J., Schal C., Tarpy D.R. and Grozinger C.M. 2011b. Effects of instrumental insemination and insemination quantity on dufour’s gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera). J. Chem. Ecol. 37: 1027–1036Google Scholar
  52. Ruttner F. 1976. The Instrumental Insemination of the Queen Bee. International Beekeeping Technology and Economy. Institute, 2 Edn. Apimondia, Bucharest.Google Scholar
  53. Seeley T.D. 1995. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambrige, MAGoogle Scholar
  54. Seeley T.D., Visscher P.K. and Passino K.M. 2006. Group decision making in honey bee swarms. Am. Sci. 94: 220–229Google Scholar
  55. Singer T.L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38: 394–405Google Scholar
  56. Sledge M.F., Boscaro F. and Turillazzi S. 2001. Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav. Ecol. Sociobiol. 49: 401–409Google Scholar
  57. Slessor K.N., Kaminski L.-A., King G.G.S., Borden J.H. and Winston M.L. 1988. Semiochemical basis of the retinue response to queen honey bees. Nature 332: 354–356Google Scholar
  58. Smith A.A., Hölldobler B. and Liebig J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19: 78–81Google Scholar
  59. Smith A.A., Millar J.G., Hanks L.M. and Suarez A.V. 2012. Experimental evidence that workers recognize reproductives through cuticular hydrocarbons in the ant Odontomachus brunneus. Behav. Ecol. Sociobiol. 66: 1267–1276Google Scholar
  60. Strauss K., Scharpenberg H., Crewe R., Glahn F., Foth H. and Moritz R. 2008. The role of the queen mandibular gland pheromone in honeybees (Apis mellifera): Honest signal or suppressive agent? Behav. Ecol. Sociobiol. 62: 1523–1531Google Scholar
  61. Tarpy D.R. and Mayer M.K. 2009. The effects of size and reproductive quality on the outcomes of duels between honey bee queens (Apis mellifera L.). Ethol. Ecol. Evol. 21: 147–153Google Scholar
  62. Thomas M.L. and Simmons L.W. 2009. Male-derived cuticular hydrocarbons signal sperm competition intensity and affect ejaculate expenditure in crickets. Proc. R. Soc. B 276: 383–388Google Scholar
  63. Thomas M.L. and Simmons L.W. 2011. Crickets detect the genetic similarity of mating partners via cuticular hydrocarbons. J. Evol. Biol. 24: 1793–1800Google Scholar
  64. Van Oystaeyen A., Oliveira R.C., Holman L., van Zweden J.S., Romero C., Oi C.A, d’Ettorre P., Khalesi M., Billen J., Wäckers F., Millar J.G. and Wenseleers T. 2014. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343: 287–290Google Scholar
  65. van Wilgenburg E., Symonds M.R.E. and Elgar M.A. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol. 24: 1188–1198Google Scholar
  66. van Zweden J. and d’Ettore P. 2010. Nestmate Recognition in Social Insects and the Role of Hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, CambridgeGoogle Scholar
  67. Vergoz V., Schreurs H.A. and Mercer A.R. 2007. Queen pheromone blocks aversive learning in young worker bees. Science 317: 384–386Google Scholar
  68. Wanner K.W., Nichols A.S., Walden K.K.O., Brockmann A., Luetje C.W. and Robertson H.M. 2007. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc. Natl Acad. Sci. USA 104: 14383–14388Google Scholar
  69. Welch M.D. and Lister R. 2014. Epigenomics and the control of fate, form and function in social insects. Curr. Opin. Insect Sci. 1: 31–38Google Scholar
  70. Winston M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  71. Wossler T.C. and Crewe R.M. 1999. Honeybee queen tergal gland secretion affects ovarian development in caged workers. Apidologie 30: 311–320Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  • M. Babis
    • 1
  • L. Holman
    • 2
  • R. Fenske
    • 3
  • M. L. Thomas
    • 4
  • B. Baer
    • 1
  1. 1.Centre for Integrative Bee Research (CIBER), ARC CoE in Plant Energy BiologyThe University of Western AustraliaCrawleyAustralia
  2. 2.Division of Evolution, Ecology and Genetics, Research School of BiologyThe Australian National UniversityCanberraAustralia
  3. 3.Metabolomics Australia, ARC CoE in Plant Energy BiologyThe University of Western AustraliaCrawleyAustralia
  4. 4.Centre for Evolutionary Biology, School of Animal Biology (MO92)The University of Western AustraliaCrawleyAustralia

Personalised recommendations