Insectes Sociaux

, Volume 60, Issue 3, pp 275–291 | Cite as

Intracolony chemical communication in social insects

  • F.-J. RichardEmail author
  • J. H. Hunt
Review Article


Chemical messengers are the primary mode of intracolony communication in the majority of social insect species. Chemically transmitted information plays a major role in nestmate recognition and kin recognition. Physical and behavioral castes often differ in chemical signature, and queen effects can be significant regulators of behavior and reproduction. Chemical messengers themselves differ in molecular structure, and the effects on behavior and other variables can differ as a consequence of not only molecular structure of the chemical messenger itself but also of its temporal expression, quantity, chemical blends with other compounds, and effects of the environment. The most studied, and probably the most widespread, intracolony chemical messengers are cuticular hydrocarbons (CHCs). CHCs are diverse and have been well studied in social insects with regard to both chemical structure and their role as pheromones. CHCs and other chemical messengers can be distributed among colony members via physical contact, grooming, trophallaxis, and contact with the nesting substrate. Widespread intracolony distribution of chemical messengers gives each colony a specific odor whereby colony members are integrated into the social life of the colony and non-members of the colony are excluded. Colony odor can vary as a function of genetic diversity within the colony, and the odor of a colony can change as a function of colony age and environmental effects. Chemical messengers can disseminate information on the presence of reproductives and fertility of the queen(s) and workers, and queen pheromone can play a significant role in suppressing reproduction by other colony members. New analytical tools and new avenues of investigation can continue to expand knowledge of how individual insects function as members of a society and how the society functions as a collective.


Colony closure Colony cohesion Colony odor Cuticular hydrocarbons Kin recognition Nestmate recognition Pheromones Social interactions 



We thank G. Bosquet for the design of figures 1 and 2. We thank Michiel B. Dijkstra for his helpful comments. JHH received travel funding support by the European Commission through the EMMC European Master in Applied Ecology (FPA 2008-0092/001 FRAME MUNDB123)

Supplementary material


  1. Akino T., Yamamura K., Wakamura S. and Yamaoka R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39: 381-387Google Scholar
  2. Arnold G., Quenet B., Cornuet J.M., Masson C., De Schepper B., Estoup A. and Gasqui P. 1996. Kin recognition in honeybees. Nature 379: 498Google Scholar
  3. Aubert A. and Richard F.-J. 2008. Social management of LPS-induced inflammation in Formica polyctena ants. Brain Behav. Immun. 22: 833-837Google Scholar
  4. Backx A.G., Guzman-Novoa E. and Thompson G.J. 2012. Factors affecting ovary activation in honey bee workers: a meta-analysis. Insect. Soc. 59: 381-388Google Scholar
  5. Bagnères A.G. and Blomquist G.J. 2010. Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 75-99Google Scholar
  6. Baker T.C. 2011. Insect pheromones: useful lessons for crustacean pheromone programs? In: Chemical Communication in Crustaceans (Breithaupt T. and Thiel M., Eds). Springer Science, pp 531-550Google Scholar
  7. Barron A.B. and Robinson G.E. 2008. The utility of behavioral models and modules in molecular analyses of social behavior. Genes Brain Behav. 7: 257-265Google Scholar
  8. Bennett B. 1989. Nestmate recognition systems in a monogynous-polygynous species pair of ants (Hymenoptera: Formicidae). I. Worker and queen derived cues. Sociobiology 16: 121-139Google Scholar
  9. Beye M., Neumann P., Chapuisat M., Pamilo P. and Moritz R.F.A. 1998. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43: 67-72Google Scholar
  10. Beye M., Neumann P. and Moritz R.F.A. 1997. Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena. Insect. Soc. 44: 49-58Google Scholar
  11. Bhadra A., Mitra A., Deshpande S., Chandrasekhar K., Naik D., Hefetz A. and Gadagkar R. 2010. Regulation of reproduction in the primitively eusocial wasp Ropalidia marginata: on the trail of the queen pheromone. J. Chem. Ecol. 36: 424-431Google Scholar
  12. Billen J. 2011. Exocrine glands and their key function in the communication system of social insects. Formosan Entomol. 31: 75-84Google Scholar
  13. Billen J. and Morgan E.D. 1998. Pheromone communication in social insects: sources and secretions. In: Pheromone Communication in Social Insects Ants, Wasps, Bees, and Termites (Vander Meer R.K., Breed M.D., Espelie K.E. and Winston M.L., Eds). Westview Press, Boulder, Colorado, pp 3-33Google Scholar
  14. Blomquist G.J. and Bagnères A.G. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, New YorkGoogle Scholar
  15. Boomsma J.J. and Franks N.R. 2006. Social insects: from selfish genes to self organization and beyond. Trends Ecol. Evol. 21: 303-308Google Scholar
  16. Boomsma J.J., Nielsen J., Sundström L., Oldham N.J., Tentschert J., Petersen H.C. and Morgan E.D. 2003. Informational constraints on optimal sex allocation in ants. Proc. Natl Acad. Sci. USA 100: 8799-8804Google Scholar
  17. Borges A.A., Ferreira-Caliman M.J., Nascimento F.S., Campos L.A.O. and Tavares M.G. 2012. Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata. Insect. Soc. 59: 479-486Google Scholar
  18. Böröczky K., Wada-Katsumata A., Batchelor D., Zhukovskaya M. and Schal C. 2013. Insects groom their antennae to enhance olfactory acuity. Proc. Natl Acad. Sci. USA (in press)Google Scholar
  19. Bos N., Lefevre T., Jensen A.B. and D’Ettorre P. 2012. Sick ants become unsociable. J. Evol. Biol. 25: 342-351Google Scholar
  20. Boulay R., Hefetz A., Soroker V. and Lenoir A. 2000. Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Anim. Behav. 59: 1127-1133Google Scholar
  21. Boulay R., Katzav-Gozansky T., Hefetz A. and Lenoir A. 2004. Odour convergence and tolerance between nestmates through trophallaxis and grooming in the ant Camponotus fellah (Dalla Torre). Insect. Soc. 51: 55-61Google Scholar
  22. Bourke A.F.G. 2011. Principles of Social Evolution. Oxford University Press, New York.Google Scholar
  23. Bowden R.M., Williamson M. and Breed M.D. 1998. Floral oils: their effect on nestmate recognition in the honey bee, Apis mellifera. Insect. Soc. 45: 209-214Google Scholar
  24. Brady S., Sipes S., Pearson A. and Danforth B. 2006. Recent simultaneous origins of eusociality in halictid bees. Proc. R. Soc. B 273: 1643-1649Google Scholar
  25. Brandstaetter A.S., Endler A. and Kleineidam C.J. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95: 601-608Google Scholar
  26. Breed M. 1998a. Recognition pheromones of the honey bee. Bioscience 48: 463-470Google Scholar
  27. Breed M., Perry S. and Bjostad L.B. 2004. Testing the blank state hypothesis: why honey bee colonies accept young bees. Insect. Soc. 51: 12-16Google Scholar
  28. Breed M.D. 1998b. Chemical cues in kin-recognition: criteria for identification, experimental approaches, and the honey bee as an example. In: Pheromone Communication in Social Insects (Vander Meer R.K., Breed M.D., Espelie C. and Winston M., Eds). Boulder, CO: Westview Press, pp 57-78Google Scholar
  29. Breed M.D., Leger E.A., Pearce A.N. and Wang Y.J. 1998. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55: 13-20Google Scholar
  30. Brockmann A., Groh C. and Fröhlich B. 2003. Wax perception in honeybees: contact is not necessary. Naturwissenschaften 90: 424-427Google Scholar
  31. Bruschini C., Cervo R., Cini A., Pieraccini G., Pontieri L., Signorotti L. and Turillazzi S. 2011. Cuticular hydrocarbons rather than peptides are responsible for nestmate recognition in Polistes dominulus. Chem. Senses 36: 715-723Google Scholar
  32. Bruschini C., Cervo R. and Turillazzi S. 2010. Pheromones in social wasps. In: Vitamins and Hormones (Klitwack G., Ed). Academic Press, Burlington, Massachusetts, pp 447-492Google Scholar
  33. Buczkowski G., Kumar R., Suib S.L. and Silverman J. 2005. Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J. Chem. Ecol 31: 829-843Google Scholar
  34. Buffin A., Mailleux A.C., Detrain C. and Deneubourg J.L. 2011. Trophallaxis in Lasius niger: a variable frequency and constant duration for three food types. Insect. Soc. 58: 177-183Google Scholar
  35. Butler C.G. and Fairey E.M. 1963. The role of the queen in preventing oogenesis in worker honey bees. J. Apic. Res. 2: 14-18Google Scholar
  36. Caldera E.J. and Holway D.A. 2004. Evidence that queens do not influence nestmate recognition in Argentine ants. Insect. Soc. 51: 109-112Google Scholar
  37. Candolin U. 2003. The use of multiple cues in mate choice. Biol. Rev 78: 575-595Google Scholar
  38. Carlin N.F. and Hölldobler B. 1987. The kin recognition system of carpenter ants (Camponotus spp.) II. Larger colonies. Behav. Ecol. Sociobiol. 20: 209 - 217Google Scholar
  39. Cervo R., Dani F.R., Zanetti P., Massolo A. and Turillazzi S. 2002. Chemical nestmate recognition in a stenogastrine wasp, Liostenogaster flavolineata (Hymenoptera: Vespidae). Ethol. Ecol. Evol. 14: 351-363Google Scholar
  40. Chapuisat M., Bernasconi C., Hoehn S. and Reuter M. 2005. Nestmate recognition in the unicolonial ant Formica paralugubris. Behav. Ecol. 16: 15-19Google Scholar
  41. Cotoneschi C., Dani F.R., Cervo R., Sledge M.F. and Turillazzi S. 2007. Polistes dominulus (Hymenoptera: Vespidae) larva possess their own chemical signature. J. Insect Physiol. 53: 954-963Google Scholar
  42. Couvillon M.J. and Ratnieks F.L.W. 2008. Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable-absent” recognition system. Behav. Ecol. Sociobiol. 62: 1099-1105Google Scholar
  43. Crosland M.W.J. 1989. Kin recognition in the ant Rhytidoponera confusa. I. Environmental odour. Anim. Behav. 37: 912-919Google Scholar
  44. Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies. Oxford University Press, OxfordGoogle Scholar
  45. Cuvillier-Hot V., Cobb M., Malosse C. and Peeters C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47: 485-493Google Scholar
  46. Cuvillier-Hot V., Gadagkar R., Peeters C. and Cobb M. 2002. Regulation of reproduction in a queenless ant: aggression, pheromones and reduction in conflict. Proc. R. Soc. Lond. B 269: 1295-1300Google Scholar
  47. Cuvillier-Hot V., Lenoir A., Crewe R., Malosse C. and Peeters C. 2004. Fertility signaling and reproductive skew in queenless ants. Anim. Behav. 68: 1209-1219Google Scholar
  48. Dahbi A., Cerdà X. and Lenoir A. 1998a. Ontogeny of colonial hydrocarbon label in callow workers of the ant Cataglyphis iberica. Anim. Physiol. 321: 395-402Google Scholar
  49. Dahbi A., Hefetz A., Cerdà X. and Lenoir A. 1999. Trophallaxis mediates uniformity of colony odor in Cataglyphis iberica ants (Hymenoptera, Formicidae). J. Insect Behav. 12: 559-567Google Scholar
  50. Dahbi A. and Lenoir A. 1998b. Nest separation and the dynamics of the Gestalt odor in the polydomous ant Cataglyphis iberica (Hymenoptra, Formicidae). Behav. Ecol. Sociobiol 42: 349-355Google Scholar
  51. Dani F.R., Corsi S., Pradella D., Jones G.R. and Turillazzi S. 2004a. GC-MS analysis of the epicuticule lipids of Apis mellifera reared in central Italy. Insect Social Life 5: 103-109Google Scholar
  52. Dani F.R., Foster K.R., Zacchi F., Seppä P., Massolo A. et al. 2004b. Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proc. R. Soc. Lond. B 271: 745-753Google Scholar
  53. Dani F.R., Fratini S. and Turillazzi S. 1996. Behavioural evidence for involvement of Dufour’s gland secretion in nestmate recognition in the social wasp Polistes dominulus (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 38: 311-319Google Scholar
  54. Dani F.R., Jones G.R., Corsi S., Beard R., Pradella D. and Turillazzi S. 2005. Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem. Senses 30: 477-489Google Scholar
  55. Dani F.R., Jones G.R., Destri S., Spencer S.H. and Turillazzi S. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62: 165-171Google Scholar
  56. Dani F.R., Jones G.R., Morgan E.D. and Turillazzi S. 2003. Reevaluation of the chemical secretion of the sternal glands of Polistes social wasps (Hymenoptera Vespidae). Ethol. Ecol. Evol. 15: 73-82Google Scholar
  57. Dapporto L., Lambardi D. and Turillazzi S. 2008. Not only cuticular lipids: first evidence of differences between foundresses and their daughters in polar substances in the paper wasp Polistes dominulus. J. Insect Physiol. 54: 89-95Google Scholar
  58. De Biseau J.-C., Passera L., Daloze D. and Aron S. 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profiles in the highly polygynous ant, Linepithema humile. J. Insect Physiol. 50: 585-593Google Scholar
  59. Del Piccolo F., Nazzi F., Della Vedova G. and Milani N. 2010. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 137: 967-973Google Scholar
  60. Denis D., Blatrix R. and Fresneau D. 2006. How an ant manages to display individual and colonial signals by using the same channel. J. Chem. Ecol 32: 1647-1661Google Scholar
  61. Dietemann V., Hölldobler B. and Peeters C. 2002. Caste specialization and differentiation in reproductive potential in the phylogenetically primitive ant Myrmecia gulosa. Insect. Soc. 49: 289-298Google Scholar
  62. Dietemann V. and Peeters C. 2000. Queen influence on the shift from trophic to reproductive eggs laid by workers of Pachycondyla apicalis. Insect. Soc. 47: 223-228Google Scholar
  63. Dietemann V., Peeters C. and Hölldobler B. 2005. Role of the queen in regulating reproduction in the bulldog ant Myrmecia gulosa: control or signalling? Anim. Behav. 69: 777-784Google Scholar
  64. Dietemann V., Peeters C., Liebig J., Thivet V. and Hölldobler B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and non reproductives in the ant Myrmecia gulosa. Proc. Natl Acad. Sci. USA 100: 10341-10346Google Scholar
  65. Dijkstra M.B., Nash D.R. and Boomsma J.J. 2005. Self-restraint and sterility in workers of Acromyrmex and Atta leafcutter ants. Insect. Soc. 52: 67-76Google Scholar
  66. Dronnet S., Lohou C., Christides J.P. and Bagnères A.G. 2006. Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud J. Chem. Ecol 32: 1027-1042Google Scholar
  67. Endler A., Liebig J., Schmitt T., Parker J.E., Jones G.R., Schreier P. and Hölldobler B. 2004. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl Acad. Sci. USA 101: 2945-2950Google Scholar
  68. Errard C., Hefetz A. and Jaisson P. 2006. Social discrimination tuning in ants: template formation and chemical similarity. Behav. Ecol. Sociobiol. 59: 353-363Google Scholar
  69. Fan Y., Richard F.-J., Nabila R. and Grozinger C.M. 2010. Effects of queen mandibular pheromone on nestmate recognition in worker honeybees, Apis mellifera. Anim. Behav. 79: 649-656Google Scholar
  70. Fan Y., Zurek L., Dykstra M.J. and Schal C. 2003. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German Cockroach, Blatella germanica. Naturwissenschaften 90: 121-126Google Scholar
  71. Ferveur J.F., Savarit F., O’Kane C.J., Sureau G., Greenspan R.J. and Jallon J.M. 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276: 1555-1558Google Scholar
  72. Fierro M.M., Cruz-Lopez L., Sanchez D. and Villanueva-Gutiérrez R. 2011. Queen volatile as a modulator of Tetragonisca angustula. J. Chem. Ecol. 37: 1255-1262Google Scholar
  73. Fletcher D.J.C. and Blum M.S. 1981. Pheromonal control of dealation and oogenesis in virgin queen fire ants. Science 212: 73-75Google Scholar
  74. Fletcher D.J.C. and Ross K.G. 1985. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30: 319-343Google Scholar
  75. Foitzik S., Sturm H., Pusch K., D’Ettorre P. and Heinze J. 2007. Nestmate recognition and intraspecific chemical and genetic variation in Temnothorax ants. Anim. Behav. 73: 999-1007Google Scholar
  76. Gamboa G., Reeve H.K., Ferguson I.D. and Wacker T.L. 1986. Nestmate recognition in social wasps: the origin and acquisition of recognition odours. Anim. Behav. 34: 685-695Google Scholar
  77. Gamboa G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fenn. 41: 789-808Google Scholar
  78. Gamboa G.J., Grudzien T.A., Espelie K.E. and Bura E.A. 1996. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Anim. Behav. 51: 625-629Google Scholar
  79. Getz W.M. and Smith K. 1986. Honey bee kin recognition: learning self and nestmate phenotypes. Anim. Behav. 34: 1617-1626Google Scholar
  80. Gibbs A.G. 1995. Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp. Biochem. Physiol. 112B: 667-672Google Scholar
  81. Gibbs A.G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38: 471-482Google Scholar
  82. Giraud T., Pedersen J.S. and Keller L. 2002. Evolution of supercolonies: the Argentine ants of southern Europe. Proc. Natl Acad. Sci. USA Google Scholar
  83. Glancey B.M., Rocca J.R., Lofgren C.S. and Tumlinson J.H. 1984. Field tests with synthetic components of the queen recognition pheromone of the red imported fire ant, Solenopsis invicta. Sociobiology 9: 19Google Scholar
  84. Greene M.J. and Gordon D.M. 2003. Cuticular hydrocarbons inform task decisions. Nature 423: 32Google Scholar
  85. Greene M.J. and Gordon D.M. 2007. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210: 897-905Google Scholar
  86. Guerrieri F.J., Nehring V., Jorgensen C.G., Nielsen J., Giovanni Galizia C. and D’Ettorre P. 2009. Ants recognize foes and not friends. Proc. R. Soc. Lond. B 276: 2461-2468Google Scholar
  87. Hadley N.F. and Schultz T.D. 1987. Water-loss in three species of tiger beetles (Cicindela) - correlations with epicuticular hydrocarbons. J. Insect Physiol. 33: 677-682Google Scholar
  88. Hannonen M., Sledge M.F., Turillazzi S. and Sundström L. 2002. Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim. Behav. 64: 477-485Google Scholar
  89. Hanus R., Vrkoslav V., Hrdy I., Cvacka J. and Sobotnik J. 2010. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. Lond. B 277: 995-1002Google Scholar
  90. Hefetz A., Soroker V., Dahbi A., Malherbe M.C. and Fresneau D. 2001. The front basitarsal brush in Pachycondyla apicalis and its role in hydrocarbon circulation. Chemoecology 11: 17-24Google Scholar
  91. Heinze J. 1996. Reproductive hierarchies among workers of the slave-making ant, Chalepoxenus muellerianus. Ethology 102: 117-127Google Scholar
  92. Heinze J. 2004. Reproductive conflict in insect societies. Adv. Stud. Behav. 34: 1-57Google Scholar
  93. Heinze J., Foitzik S., Hippert A. and Hölldobler B. 1996. Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102: 510-522Google Scholar
  94. Helanterä H., Strassmann J.E., Carrillo J. and Queller D.C. 2009. Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol. Evol. 24: 341-349Google Scholar
  95. Hines H., Hunt J., O’Conner T., Gillespie J. and Cameron S. 2007. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Natl Acad. Sci. USA 104: 3295-3299Google Scholar
  96. Hölldobler B. 1999. Multimodal signals in ant communication. J. Comp. Physiol. A 184: 129-141Google Scholar
  97. Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge, MassGoogle Scholar
  98. Holman L., Jorgensen C.G., Nielsen J. and d’Ettorre P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. Lond. B 277: 3793-3800Google Scholar
  99. Holman L., Leroy C., Jorgensen C., Nielsen J. and d’Ettorre P. 2013. Are queen ants inhibited by their own pheromone? Regulation of productivity via negative feedback. Behav. Ecol. 24: 380-385Google Scholar
  100. Holzer B., Chapuisat M., Kremer N., Finet C. and Keller L. 2006. Unicoloniality, recognition and genetic differentiation in a native Formica ant. J. Evol. Biol. 19: 2031-2039Google Scholar
  101. Hoover S.E.R., Keeling C.I., Winston M.L. and Slessor K.N. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90: 477-480Google Scholar
  102. Howard R.W. and Blomquist G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50: 371-393Google Scholar
  103. Hunt J.H. 2007. The Evolution of Social Wasps. Oxford University PressGoogle Scholar
  104. Hunt J.H. 2012. A conceptual model for the origin of worker behaviour and adaptation of eusociality. J. Evol. Biol. 25: 1-19Google Scholar
  105. Hunt J.H. and Richard F.-J. Intracolony vibroacoustic communication in social insects. Insect. Soc. (in press)Google Scholar
  106. Isingrini M., Lenoir A. and Jaisson P. 1985. Preimaginal learning as a basis of colony-brood recognition in the ant Cataglyphis cursor. Proc. Natl Acad. Sci. U.S.A. 82: 8545-8547Google Scholar
  107. Jaisson P. 1987. The construction of fellowship between nestmates in social Hymenoptera. Exp. Suppl. 54: 313-331Google Scholar
  108. Jutsum A.R., Saunders T.S. and Cherrett J.M. 1979. Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Anim. Behav. 27: 839-844Google Scholar
  109. Kaib M., Jmhasly P., Wilfert L., Durka W., Franke S., Franke W., Leuthold R.H. and Brandl R. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385Google Scholar
  110. Kather R., Drijfhout F. and Martin S. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37: 205-212Google Scholar
  111. Katzav-Gozansky T., Boulay R., Soroker V. and Hefetz A. 2006. Queen pheromones affecting the production of queen-like secretion in workers. J. Comp. Physiol. A 192: 737-742Google Scholar
  112. Katzav-Gozansky T., Soroker V. and Hefetz A. 1997. Plasticity of caste-specific Dufour’s gland secretion in the honey bee (Apis mellifera L.). Naturwissenschaften 84: 238-241Google Scholar
  113. Keeling C., Slessor K.N., Higo H.A. and Winston M.L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl Acad. Sci. USA 100: 4486-4491Google Scholar
  114. Keller L. and Passera L. 1989. Influence of the number of queens on nestmate recognition and attractiveness of queens to workers in the Argentine ant, Iridomyrmex humilis (Mayr). Anim. Behav. 37: 733-740Google Scholar
  115. Kirchner W.H. and Arnold G. 2001. Intracolonial kin discrimination in honeybees: do bees dance with their supersisters? Anim. Behav. 61: 597-600Google Scholar
  116. Kocher S., Richard F.-J., Tarpy D. and Grozinger C.M. 2009. Queen reproductive state modulates pheromone production and queen-worker interactions in honey bees. Behav. Ecol. 20: 1007-1014Google Scholar
  117. Kocher S., Richard F.-J., Tarpy D.R. and Grozinger C.M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9: 232Google Scholar
  118. Kocher S.D. and Grozinger C.M. 2011. Cooperation, conflict and the evolution of queen pheromones. J. Chem. Ecol. 37: 1263-1275Google Scholar
  119. Lahav S., Soroker V., Hefetz A. and Vander Meer R.K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86: 246-249Google Scholar
  120. Lahav S., Soroker V., Vander Meer R.K. and Hefetz A. 1998. Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav. Ecol. Sociobiol. 43: 203-212Google Scholar
  121. Le Conte Y. and Hefetz A. 2008. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53: 523-542Google Scholar
  122. Lengyel F., Westerlund S.A. and Kaib M. 2007. Juvenile Hormone III influences task-specific cuticular hydrocarbon profile changes in the ant Myrmicaria eumenoides. J. Chem. Ecol. 33: 167-181Google Scholar
  123. Lenoir A., Fresneau D., Errard C. and Hefetz A. 1999. The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Information Processing in Social Insects (Detrain C., Deneubourg J.L. and Pasteels J., Eds). Birkhäuser, Basel, pp 219-237Google Scholar
  124. Lenoir A., Hefetz A., Simon T. and Soroker V. 2001. Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol. Entomol. 26: 275-283Google Scholar
  125. Liang D., Blomquist G.J. and Silverman J. 2001. Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp. Biochem. Physiol. 129: 871-882Google Scholar
  126. Liang D. and Silverman J. 2000. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87: 412-416Google Scholar
  127. Liebig J. 2010. Hydrocarbon profiles indicate fertility and dominance status in ant, bee and wasp colonies. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 254-281Google Scholar
  128. Liebig J., Eliyahu D. and Brent C.S. 2009. Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 63: 1799-1807Google Scholar
  129. Liebig J., Peeters C., Oldham N.J., Markstädter C. and Hölldobler B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl Acad. Sci. USA 97: 4124-4131Google Scholar
  130. Lin Y.K., Chang H.Y., Wu W.J., Ho H.Y. and Lin C.C. 2010. Different cuticular chemical profiles between the monogynous and polygynous forms of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae) in Taiwan. Sociobiology 56: 39-55Google Scholar
  131. Lommelen E., Johnson C.A., Drijfhout F.P., Billen J., Wenseleers T. and Gobin B. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32: 2023-2034Google Scholar
  132. Lorenzi M.C., Bagneres A.G., Clément J.L. and Turillazzi S. 1997. Polistes biglumis bimaculatus epiculticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insect. Soc. 44: 123-138Google Scholar
  133. Lucas C., Pho D.B., Fresneau D. and Jallon J.-M. 2004. Hydrocarbon circulation and colonial signature in Pachycondyla villosa. J. Insect Physiol. 50: 595-607Google Scholar
  134. Maisonnasse A., Alaux C., Beslay D., Crauser D., GInes C., Plettner E. and Le Conte Y. 2010. New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation? Front Zool. 7: 18Google Scholar
  135. Martin G.F. and Ramalho-Ortigao J.M. 2012. Oenocytes in insects. Invertebr. Survival J. 9: 139-152Google Scholar
  136. Martin S.J. and Drijfhout F. 2009a. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35: 1151-1161Google Scholar
  137. Martin S.J. and Drijfhout F. 2009b. Nest-mate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J. Chem. Ecol. 35: 368-374Google Scholar
  138. Martin S.J., Vitikainen E., Helanterä H. and Drijfhout F.P. 2008. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. Lond. B 275: 1271-1278Google Scholar
  139. Matsuura K. 2001. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92: 20-26Google Scholar
  140. Matsuura K. 2012. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J. Chem. Ecol. 38: 746-754Google Scholar
  141. Matsuura K., Himuro C., Yokoi T., Yamamoto Y., Vargo E.L. and Keller L. 2010. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad Sci. USA 107: 12963-12968Google Scholar
  142. Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362-364Google Scholar
  143. Melathopoulos A.P., Winston M., Pettis J.S. and Pankiw T. 1996. Effect of queen mandibular pheromone on initiation and maintenance of queen cells in the honey bee (Apis mellifera L.). Can. Entomol. 128: 263-272Google Scholar
  144. Meskali M., Bonavita-Cougourdan A., Provost E., Bagnères A.G., Dusticier G. and Clément J.L. 1995. Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (Scop.) (Hymenoptera: Formicidae): role of postpharyngeal glands. J. Chem. Ecol. 21: 1127-1148Google Scholar
  145. Millar J.G. 2010. Chemical synthesis of insect cuticular hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 163-186Google Scholar
  146. Mitra A. and Gadagkar R. 2011a. Can Dufour’s gland compounds honestly signal fertility in the primitively eusocial wasp Ropalidia marginata? Naturwissenschaften 98: 157-161Google Scholar
  147. Mitra A. and Gadagkar R. 2012. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insect. Soc. 59: 251-255Google Scholar
  148. Mitra A., Saha P., Chaoulideer M.E., Bhadra A. and Gadagkar R. 2011b. Chemical communication in Ropalidia marginata: Dufour’s gland contains queen signal that is perceived across colonies and does not contain colonial signal. J. Insect Physiol. 57: 280-284Google Scholar
  149. Monnin T. 2006. Chemical recognition of reproductive status in social insects. Ann. Zool. Fennici 43: 515-530Google Scholar
  150. Monnin T., Malosse C. and Peeters C. 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J. Chem. Ecol. 24: 473-490Google Scholar
  151. Monnin T., Ratnieks F.L.W., Jones G.R. and Beard R. 2002. Pretender punishment induced by chemical signalling in a queenless ant. Nature 419: 61-65Google Scholar
  152. Moore D. and Liebig J. 2010. Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. Behav. Ecol. Sociobiol. 64: 1011-1018Google Scholar
  153. Moreira D.D.O., Erthal J.M., Carrera M.P., Silva C.P. and Samuels R.I. 2006. Oral trophallaxis in adult leaf-cutting ants Acromyrmex subterraneus subterraneus (Hymenoptera, Formicidae). Insect. Soc. 53: 345-348Google Scholar
  154. Mori K. 2007. The significance of chirality in pheromone science. Biorg. Med. Chem. 15: 7505-7523Google Scholar
  155. Nehring V., Evison S.E.F., Santorelli L.A., D’Ettorre P. and Hughes W.O.H. 2011. Kin-informative recognition cues in ants. Proc. R. Soc. Lond. B 278: 1942-1948Google Scholar
  156. Nielsen J., Boomsma J.J., Oldham N.J., Petersen H.C. and Morgan E.D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insect. Soc. 46: 58-65Google Scholar
  157. Nowak M.A., Tarnita C.E. and Wilson E.O. 2010. The evolution of eusociality. Nature 466: 1057-1062Google Scholar
  158. Nunes T.M., Turatti I.C., Lopes N.P. and Zucchi R. 2009. Chemical signals in the stingless bee, Frieseomelitta varia, indicate caste, gender, age and reproductive status. J. Chem. Ecol. 35: 1172-1180Google Scholar
  159. Obin M.S. 1986. Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): effect of environment and the role of cuticular hydrocarbons. J. Chem. Ecol. 12: 1965-1975Google Scholar
  160. Obin M.S. and Vander Meer R.K. 1988. Sources of nestmate recognition cues in the imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Anim. Behav. 36: 1361-1370Google Scholar
  161. Ozaki M. and Wada-Katsumata A. 2010. Perception and olfaction of cuticular compounds. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 207-221Google Scholar
  162. Panek L.M. and Gamboa G.J. 2000. Queens of the paper wasp Polistes fuscatus (Hymenoptera: Vespidae) discriminate among larvae on the basis of relatedness. Ethology 106: 159-170Google Scholar
  163. Pankiw T., Huang Z.Y., Winston M.L. and Robinson G.E. 1998. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44: 685-692Google Scholar
  164. Peeters C. and Liebig J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Organization of Insect Societies: From Genome to Socio-complexity (Gadau J. and Fewell J., Eds). Harvard University Press, Cambridge, pp 220-242Google Scholar
  165. Peeters C., Monnin T. and Malosse C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. Lond. B 266: 1323-1327Google Scholar
  166. Pettis J.S., Winston M. and Collins A.M. 1995. Suppression of queen rearing in European and Africanized honey bees Apis melifera L. by synthetic queen mandibular gland pheromone. Insect. Soc. 42: 113-121Google Scholar
  167. Pfennig D.W., Reeve H.K. and Shellman J.S. 1983. Learned component of nestmate discrimination in workers of a social wasp, Polistes fuscatus (Hymenoptera: Vespidae). Anim. Behav. 31: 412-416Google Scholar
  168. Plettner E., Otis G.W., Wimalaratne P.D.C., Winston M.L., Slessor K.N., Pankiw T. and Punchihewa P.W.K. 1997. Species- and caste-determined mandibular gland signals in honeybees (Apis). J. Chem. Ecol. 23: 363-377Google Scholar
  169. Provost E. 1987. Role of the queen in the intra-colonial aggressivity and nestmate recognition in Leptothorax lichtensteini ants. In: Chemistry and Biology of Social Insects (Proc. 10 th Int. Congr. IUSSI, Munich, 1986) (Eder J. and Rembold H., Eds). Verlag J. Peperny, Munich, pp 479Google Scholar
  170. Richard F.-J., Holly H. and Grozinger C.M. 2012. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 13: 558Google Scholar
  171. Richard F.-J., Schal C., Tarpy D. and Grozinger C.M. 2011. Effects of instrumental insemination and insemination quantity on Dufour’s gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera). J. Chem. Ecol. 37: 1027-1036Google Scholar
  172. Richard F.-J., Aubert A. and Grozinger C.M. 2008. Modulation of social interactions by immune stimulation in honey bee workers, Apis mellifera. BMC Biology 6: 50Google Scholar
  173. Richard F.-J. and Errard C. 2009. Trophallaxis and hygienic behavior in leaf-cutting ants (Acromyrmex). J. Insect Science 9: 63Google Scholar
  174. Richard F.-J., Hefetz A., Christides J.P. and Errard C. 2004. Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus. Chemoecology 14: 9-16Google Scholar
  175. Richard F.-J., Poulsen M., Hefetz A., Errard C., Nash D.R. and Boomsma J.J. 2007a. The origin of chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 61: 1637-1649Google Scholar
  176. Richard F.-J., Poulsen M., Drijfhout F., Jones G.R. and Boomsma J.J. 2007b. Specificity in chemical profiles of workers, brood and mutualistic fungi in Atta, Acromyrmex, and Sericomyrmex fungus-growing ants. J. Chem. Ecol. 33: 2281-2292Google Scholar
  177. Richard F.-J., Tarpy D.R. and Grozinger C.M. 2007c. Effects of insemination quantity on honey bee queen physiology. PloS ONE 2: e980Google Scholar
  178. Rocca J.R., Tumlinson J.H., Glancey B.M. and Lofgren C.S. 1983. The queen recognition pheromone of Solenopsis invicta, preparation of (E)-6-(1-penenyl)-2H-pyran-2-one. Tetrahedron Lett. 24: 1889-1892Google Scholar
  179. Ross K.G. 2001. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10: 265-284Google Scholar
  180. Rosset H., Schwander T. and Chapuisat M. 2007. Nestmate recognition and levels of aggression are not altered by changes in genetic diversity in a socially polymorphic ant. Anim. Behav. 74: 951-956Google Scholar
  181. Ruther J., Sieben S. and Schricker B. 1998. Role of cuticular lipids in nestmate recognition of the European hornet Vespa crabro L. (Hymenoptera, Vespidae). Insect. Soc. 45: 169-179Google Scholar
  182. Schal C., Sevala V.L., Capurro M.D.L., Snyder T.E., Blomquist G.J. and Bagnères A.G. 2001. Tissue distribution and lipophorin transport of hydrocarbons and sex pheromones in the house fly Musca domestica. J. Insect Science 1: 1-11Google Scholar
  183. Schmitt T., Herzner G., Weckerle B., Schreier P. and Strohm E. 2007. Volatiles of foraging honeybees Apis mellifera (Hymenoptera: Apidae) and their potential role as semiochemicals. Apidologie 38: 164-170Google Scholar
  184. Scholl J. and Naug D. 2011. Olfactory discrimination of age-specific hydrocarbons generates behavioral segregation in a honeybee colony. Behav. Ecol. Sociobiol. 65: 1967-1973Google Scholar
  185. Seeley T. 1985. Honeybee Ecology: A Study of Adaptation in Social Life. Princeton University Press, Princeton, New JerseyGoogle Scholar
  186. Sevala V.L., Bagnères A.G., Kuenzli M., Blomquist G.J. and Schal C. 2000. Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J. Chem. Ecol. 26: 765-789Google Scholar
  187. Sherman P.W., Reeve H.K. and Pfennig D.W. 1997. Recognition systems. In: Behavioural Ecology (Krebs J.R. and Davies N.B., Eds). Oxford: Blackwell Science, pp 69-96Google Scholar
  188. Silverman J. and Liang D. 2001. Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenschaften 88: 73-77Google Scholar
  189. Singer T.L. and Espelie K.E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition. Anim. Behav. 44: 63-68Google Scholar
  190. Singer T.L. and Espelie K.E. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera, Vespidae). J. Insect Behav. 9: 857-870Google Scholar
  191. Sledge M.F., Dani F.R., Cervo R., Dapporto L. and Turillazzi S. 2001. Recognition of social parasites as nestmates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer. Proc. R. Soc. Lond. B 268: 2253-2260Google Scholar
  192. Slessor K.N., Kaminski L.A., King G.G.S., Borden J.H. and Winston M.L. 1988. The semiochemical basis of the retinue response to queen honey bees. Nature 332: 354-356Google Scholar
  193. Slessor K.N., Kaminski L.A., King G.G.S. and Winston M.L. 1990. Semiochemicals of the honeybee queen mandibular glands. J. Chem. Ecol. 16: 851-860Google Scholar
  194. Slessor K.N., Winston M. and Le Conte Y. 2005. Pheromone communication in the honey bee (Apis mellifera L.). J. Chem. Ecol. 31: 2731-2745Google Scholar
  195. Smith A.A., Hölldobler B. and Liebig J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19: 78-81Google Scholar
  196. Soroker V., Fresneau D. and Hefetz A. 1998. Formation of colony odor in the ponerine ant Pachycondyla apicalis. J. Chem. Ecol. 24: 1077-1090Google Scholar
  197. Soroker V. and Hefetz A. 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J. Insect Physiol. 46: 1097-1102Google Scholar
  198. Soroker V., Lucas C., Simon T., Hefetz A., Fresneau D. and Durand J.L. 2003. Hydrocarbon distribution and colony odour homogenisation in Pachycondyla apicalis. Insect. Soc. 50: 212-217Google Scholar
  199. Sorvari J., Theodora P., Turillazzi S., Hakkarainen H. and Sundström L. 2008. Food resources, chemical signaling and nestmate recognition in the ant Formica aquilonia. Behav. Ecol. 19: 441-447Google Scholar
  200. Suarez A.V., Holway D.A., Liang D.S., Tsutsui N.D. and Case T.J. 2002. Spatiotemporal patterns of intraspecific aggression in the invasive Argentine ant. Anim. Behav. 64: 697-708Google Scholar
  201. Suàrez M.E. and Thorne B.L. 2000. Rate, amount, and distribution pattern of alimentary fluid transfer via trophallaxis in three species of termites (Isoptera: Rhinotermitidae, Termopsidae). Ann. Entomol. Soc. Am. 93: 145-155Google Scholar
  202. Sundström L. 1997. Queen acceptance and nestmate recognition in monogyne and polygyne colonies of the ant Formica truncorum. Anim. Behav. 53: 499-510Google Scholar
  203. Symonds M.R.E. and Elgar M.A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23: 220-228Google Scholar
  204. Tannure-Nascimento I.C., Nascimento F.S., Turatti I.C., Lopes N.P., Trigo J.R. and Zucchi R. 2007. Colony membership is reflected by variations in cuticular hydrocarbon profile in a Neotropical paper wasp, Polistes satan (Hymenoptera, Vespidae). Genet. Mol. Res. 6: 390-396Google Scholar
  205. Tentschert J., Bestmann H.J. and Heinze J. 2002. Cuticular compounds of workers and queens in two Leptothorax ant species - a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology 12: 15-21Google Scholar
  206. Tissot M., Nelson D.R. and Gordon D.M. 2001. Qualitative and quantitative differences in cuticular hydrocarbons between laboratory and field colonies of Pogonomyrmex barbatus. Comp. Biochem. Physiol. 130: 349-358Google Scholar
  207. Torres C., Brandt M. and Tsutsui N. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect. Soc. 54: 363-373Google Scholar
  208. Tsutsui N.D., Suarez A.V. and Grosberg R.K. 2003. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc. Natl. Acad. Sci. USA 100: 1078-83Google Scholar
  209. Tsutsui N.D., Suarez A.V., Holway D.A. and Case T.J. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97: 5948-53Google Scholar
  210. Turillazzi S., Sledge M.F., Dapporto L., Landi M., Fanelli D., Fondelli L., Zanetti P. and Dani F.R. 2004. Epicuticular lipids and fertility in primitively social wasps (Hymenoptera Stenogastrinae). Physiol. Entomol. 29: 464-471Google Scholar
  211. Van der Horst D.J. 1990. Lipid transport function of lipoproteins in flying insects. Bioch. Bioph. Acta 1047: 195-211Google Scholar
  212. van Wilgenburg E., Sulc R., Shea K.J. and Tsutsui N.D. 2010. Deciphering the chemical basis of nestmate recognition. J. Chem. Ecol. 36: 751-758Google Scholar
  213. van Wilgenburg E., Symonds M.R.E. and Elgar M.A. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol. 24: 1188-1198Google Scholar
  214. Van Zweden J.S., Dreier S. and d’Ettorre P. 2009. Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. J. Insect Physiol. 55: 158-163Google Scholar
  215. Van Zweden J.S., Vitikainen E., D’Ettorre P. and Sundström L. 2011. Do cuticular hydrocarbons provide sufficient information for optimal sex allocation in the ant Formica exsecta? J. Chem. Ecol. 37: 1365-1373Google Scholar
  216. Vander Meer R.K. and Alonso L.E. 2002. Queen primer pheromone affects conspecific fire ant (Solenopsis invicta) aggression. Behav. Ecol. Sociobiol. 51: 122-130Google Scholar
  217. Vander Meer R.K., Glancey B.M., Lofgren C.S., Glover A., Tumlinson J.H. and Rocca J. 1980. The poison sac of red imported fire ant queens: source of a pheromone attractant. Ann. Entomol. Soc. Am. 73: 609-612Google Scholar
  218. Vander Meer R.K. and Morel L. 1998. Nestmate recognition in ants. In: Pheromone Communication in Social Insects (Vander Meer R.K., Breed M., Espelie K.E. and Winston M., Eds). Westview Press, Boulder, CO, pp 79-103Google Scholar
  219. Vander Meer R.K., Preston C.A. and Hefetz A. 2008. Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Naturwissenschaften 95: 1155-1158Google Scholar
  220. Vander Meer R.K., Saliwanchik D. and Lavine B. 1989. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: implications for nestmate recognition. J. Chem. Ecol. 15: 2115-2125Google Scholar
  221. Vargo E.L. 1998. Primer pheromones in ants. In: Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (Vander Meer R.K., Breed M.D., Winston M. and Espelie K.E., Eds). Westview Press, Boulder, Colorado, pp 293-313Google Scholar
  222. Vargo E.L. and Hulsey C.D. 2000. Multiple glandular origins of queen pheromones in the fire ant Solenopsis invicta. J. Insect Physiol. 46: 1151-1159Google Scholar
  223. Vasquez G.M., Schal C. and Silverman J. 2009. Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J. Chem. Ecol. 35: 922-932Google Scholar
  224. Vauchot B., Provost E., Bagnères A.G., Riviere G., Roux M. and Clément J.L. 1998. Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. J. Insect Physiol. 44: 59-66Google Scholar
  225. Wagner D., Brown M.J.F., Broun P., Cuevas W., Moses L.E., Chao D.L. and Gordon D.M. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24: 2021-2037Google Scholar
  226. Weil T., Hoffmann K., Kroiss J., Strohm E. and Korb J. 2009. Scent of a queen-cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96: 315-319Google Scholar
  227. Winston M.L. 1987. The Biology of the Honey Bee. Cambridge: Harvard University PressGoogle Scholar
  228. Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S. et al. 2010. The genome of the fire ant Solenopsis invicta. Proc. Natl Acad. Sci. USA 108: 5679-5684Google Scholar
  229. Yew J.Y., Cody R.B. and Kravitz E.A. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl Acad. Sci. USA 105: 7135-7140Google Scholar
  230. Yusuf A.A., Pirk C.W.W., Crewe R.M., Njagi P.G.N., Gordon I. and Torto B. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J. Chem. Ecol. 36: 441-448Google Scholar
  231. Zupko K., Sklan D. and Lensky Y. 1993. Proteins of the honeybee (Apis mellifera L.) body surface and exocrine gland secretions. J. Insect Physiol. 39: 41-46Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2013

Authors and Affiliations

  1. 1.Laboratoire Ecologie et Biologie des Interactions, Team Ecologie Evolution Symbiose, UMR CNRS 7267Université de PoitiersPoitiers CedexFrance
  2. 2.Departments of Biology and Entomology, W.M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations