Insectes Sociaux

, Volume 60, Issue 2, pp 163–172 | Cite as

Frequency of social nesting in the sweat bee Megalopta genalis (Halictidae) does not vary across a rainfall gradient, despite disparity in brood production and body size

Research Article

Abstract

Local environmental conditions can facilitate or preclude the development of eusocial colonies in insects that facultatively express behavioural-caste polyphenism. To explore how environmental variability relates to the expression of social behaviour, we collected 120 nests of the facultatively social sweat bee, Megalopta genalis (Halictidae: Augochlorini), along a nearly twofold rainfall gradient in central Panama. Brood rearing activity of bees in seasonal neotropical forests should track flowering phenologies, which are typically set by rainfall and phylogenetic patterns. Nests were collected at roughly similar times of year from three sites comprising wet, moist and dry lowland tropical forests. There were significant differences in ovarian development, brood production and body size across sites for some comparisons, but no effect on the proportion of social colonies collected at each site. Results show that phenotypes of M. genalis relevant to social behaviour (ovarian development, brood production, body size) may be responsive to variation in local environment over distances of <20 km.

Keywords

Social evolution Seasonality Rainfall gradient Eusocial behaviour Augochlorini 

Notes

Acknowledgments

We thank P. Galgani and Smithsonian Tropical Research Institute (STRI) support staff for logistical help, O. Acevedo, D. Roubik, staff of the Sierra Llorona Lodge and the administration of the Parque Natural Metropolitano facilitated access to field sites. We gratefully acknowledge R. Condit for the use of STRI’s long-term database and S. Dennis for advice on R. The manuscript was further improved by suggestions from M. Schwarz, B. Turner, M.J. West-Eberhard and two anonymous reviewers. Research was supported by STRI Earl S. Tupper Postdoctoral Fellowship to SMT; a SI Restricted Endowment Grant to WTW, SMT and KMK; a STRI-Butler University Internship to CNF; a STRI Short Term Fellowship to SMR. We are grateful to the Autoridad National del Medioambiente of the Republic of Panama for research permit no. SEX/A-34-09.

Supplementary material

40_2012_280_MOESM1_ESM.pdf (792 kb)
Supplementary material (PDF 791 kb)

References

  1. Cane J.H. 1987. Estimation of bee size using intertegular width (Apoidea). J. Kansas Entomol. Soc. 60: 145–147Google Scholar
  2. Condit R., Watts K., Bohlman S.A., Rolando P., Foster R.B. and Hubbell S.P. 2000. Quantifying the deciduousness of tropical forest canopies under varying climates. J. Veg. Sci. 11: 649–658Google Scholar
  3. Condit R., Aguilar S., Hernandez A., Perez R., Lao S., Angher G., Hubbell S.P. and Foster R.B. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20: 51–72Google Scholar
  4. Condit R., Pérez R., Lao A., Aguilar S. and Somoza A. 2005. Geographic ranges and b-diversity: Discovering how many tree species there are where. Biol. Skrif. 55: 57–71Google Scholar
  5. Cronin A.L. 2001. Social flexibility in a primitively social allodapine bee (Hymenoptera: Apidae): results of a translocation experiment. Oikos 94: 337–343Google Scholar
  6. Cronin A.L., Bridge C. and Field J. 2011. Climatic correlates of temporal demographic variation in the tropical hover wasp Liostenogaster flavolineata. Insect. Soc. 58: 23–29Google Scholar
  7. Eickwort G.C. and Eickwort K.R. 1971. Aspects of the biology of Costa Rican halictine bees, II. Dialictus umbripennis and adaptations of its caste structure to different climates. J. Kansas Entomol. Soc. 44: 343–373Google Scholar
  8. Eickwort G.C., Eickwort J.M., Gordon J. and Eickwort M.A. 1996. Solitary behavior in a high altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 38: 227–223Google Scholar
  9. Field J., Paxton R.J., Soro A. and Bridge C. 2010. Cryptic plasticity underlies a major evolutionary transition. Curr. Biol. 20: 2028–2031Google Scholar
  10. Field J., Paxton R.J., Soro A., Craze P. and Bridge C. 2012. Body size, demography and foraging in a socially plastic sweat bee: a common garden experiment. Behav. Ecol. Sociobiol. 66: 743–756Google Scholar
  11. Frankie G.W., Haber, W.A., Vinson S.B., Bawa K.S., Ranchi P.S. and Zamora-Villalobos N.A. 2004. Flowering phenology and pollination systems diversity in the seasonal dry forest. In: Biodiversity Conservation in Costa Rica: Learning the Lessons in a Seasonal Dry Forest (Frankie G.W., Mata-Jiménez A. and Vinson S.B., Eds), University of California Press, Berkeley. pp 17–29Google Scholar
  12. Janzen D.H. 1967. Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution 21: 620–637Google Scholar
  13. Kalacska M., Bohlman S., Sanchez-Azofeifa G.A., Castro-Esau K. and Caelli T. 2007. Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels. Remote Sens. Environ. 109: 406–415Google Scholar
  14. Kapheim K.M., Bernal S.P., Smith A.R., Nonacs P. and Wcislo W.T. 2011. Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae). Behav. Ecol. Sociobiol. 65: 1179–1190Google Scholar
  15. Kapheim K.M., Smith A.R., Ihle K.E., Amdam G.V., Nonacs P. and Wcislo W.T. 2012. Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proc. R. Soc. Lond. B 279: 1437–1446Google Scholar
  16. Kapheim K.M., Smith A.R., Nonacs P., Wcislo W.T. and Wayne R.K. (in press). Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav. Ecol. Sociobiol. Published online 29 November 2012. doi: 10.1007/s00265-012-1453-x
  17. Michener C.D. 1961. Social polymorphism in Hymenoptera. In: Insect Polymorphism, Symposia of the Royal Entomological Society of London No. 1 (Kennedy J.S., Ed), Bartholomew Press, Surrey. pp 43–56Google Scholar
  18. Michener C.D. 1974. The Social Behavior of the Bees. Belknap Press, Cambridge MAGoogle Scholar
  19. Michener C.D. 1990. Reproduction and castes in social halictine bees. In: Social Insects, an Evolutionary Approach to Castes and Reproduction (Engels W., Ed), Springer-Verlag, Berlin. pp 77–121Google Scholar
  20. Mueller U.G. and Wolf-Mueller B. 1993. A method for estimating the age of bees: age-dependent wing wear and coloration in the wool-carder bee Anthidium manicatum. J. Insect Behav. 6: 529–537Google Scholar
  21. Pyke C.R., Condit R., Aguilar S. and Lao S. 2001. Floristic composition across a climatic gradient in a neotropical lowland forest. J. Veg. Sci. 12: 553–566Google Scholar
  22. Plateaux-Quénu C., Plateaux L. and Packer L. 2000. Population-typical behaviours are retained when eusocial and non-eusocial forms of Evylaeus albipes (F.) (Hymenoptera, Halictidae) are reared simultaneously in the laboratory. Insect. Soc. 47: 263–270Google Scholar
  23. Purcell J. 2011. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol. Rev. 86: 475–491Google Scholar
  24. Quezada-Euán J.J.G., López-Velasco A., Pérez-Balam J., Moo-Valle H., Velazquez-Madrazo A. and Paxton R.J. 2011. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58: 31–38Google Scholar
  25. R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/. Accessed August 2011
  26. Rehan S.M., Richards M.H. and Schwarz M.P. 2009. Evidence of social nesting in the Ceratina of Borneo (Hymenoptera: Apidae). J. Kansas Entomol. Soc. 82: 194–209Google Scholar
  27. Richards M.H. 2004. Annual and social variation in forging effort of the obligately eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 77: 484–502Google Scholar
  28. Richards M.H. and Packer L. 1995. Annual variation in survival and reproduction of the primitively eusocial sweat bee Halictus ligatus (Hymenoptera: Halictidae). Can. J. Zool. 73: 933–941Google Scholar
  29. Richards M.H. and Packer L. 1996. The socioecology of body size variation in the primitively eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). Oikos 77: 68–76Google Scholar
  30. Richards M.H., Packer L. and Seger J. 1995. Unexpected patterns of parentage and relatedness in a primitively eusocial bee. Nature 373: 239–241Google Scholar
  31. Roubik D.W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, CambridgeGoogle Scholar
  32. Roulston T.H. and Cane J.H. 2000. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 73: 129–142Google Scholar
  33. Roulston T.H. and Cane J.H. 2002. The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol. Ecol. 16: 49–65Google Scholar
  34. Sakagami S.F. and Munukata M. 1972. Distribution and bionomics of a transpalaearctic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life cycle at high altitude. J. Fac. Sci. Hokkaido Univ. VI Zool. 18: 411–439Google Scholar
  35. Santos L.M., Tierney S.M. and Wcislo W.T. 2010. Nest descriptions of Megalopta aegis (Vachal) and M. guimaraesi Santos & Silveira (Hymenoptera, Halictidae) from the Brazilian Cerrado. Rev. Bras. Entomol. 54: 332–334Google Scholar
  36. Schwarz M.P., Richards M.H. and Danforth B.N. 2007. Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Ann. Rev. Entomol. 52: 127–150Google Scholar
  37. Smith A.R., Kapheim K.M., O’Donnell S. and Wcislo W.T. 2009. Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae). Anim. Behav. 78: 1043–1050Google Scholar
  38. Smith A.R., Lopez I., Moreno E., Roubik D.W. and Wcislo W.T. 2012. Pollen use and foraging distance of Megalopta sweat bees in relation to resource availability in a tropical forest. Ecol. Entomol. 37: 309–317Google Scholar
  39. Smith A.R., Wcislo W.T. and O’Donnell S. 2008. Body size shapes caste expression, and cleptoparasitism reduces body size in the facultatively eusocial bee Megalopta (Hymenoptera: Halictidae). J. Insect Behav. 21: 394–406Google Scholar
  40. Soucy S.L. 2002. Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Ann. Entomol. Soc. Am. 95: 57–65Google Scholar
  41. Soucy S.L. and Danforth B.N. 2002. Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution 56: 330–341Google Scholar
  42. Tierney S.M., Gonzales-Ojeda T. and Wcislo W.T. 2008a. Biology of a nocturnal bee, Megalopta atra (Hymenoptera: Halictidae; Augochlorini) from the Panamanian highlands. J. Nat. Hist. 42: 1841–1847Google Scholar
  43. Tierney S.M., Gonzales-Ojeda T. and Wcislo W.T. 2008b. Nesting biology and social behavior of two Xenochlora bees (Hymenoptera: Halictidae: Augochlorini) from Perú. J. Kansas Entomol. Soc. 81: 61–72Google Scholar
  44. Tierney S.M. and Schwarz M.P. 2009. Reproductive hierarchies in the African allodapine bee Allodapula dichroa (Apidae: Xylocopinae) and ancestral forms of sociality. Biol. J. Linn. Soc. 97: 520–530Google Scholar
  45. Wcislo W.T. 1996. Commentary on solitary behavior in social bees. Behav. Ecol. Sociobiol. 38: 235–236Google Scholar
  46. Wcislo W.T. 1997. Behavioral environments of sweat bees (Halictinae) in relation to variability in social organization. In: The Evolution of Social Behavior in Insects and Arachnids (Crespi B.J. and Choe J.C., Eds), Cambridge University Press, Cambridge. pp 316–332Google Scholar
  47. Wcislo W.T. 2000. Environmental hierarchy, behavioral contexts, and social evolution in insects. In: Ecologia e Comportamento de Insetos (Martins R.P., Lewinsohn T.M. and Barbeitos M.S., Eds). Oecolog. Brasil. (supplement) 8: 49–84Google Scholar
  48. Wcislo W.T., Arneson L., Roesch K., Gonzalez V.H., Smith A.R. and Fernández-Marín H. 2004. The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria: an escape from competitors and enemies? Biol. J. Linn. Soc. 83: 377–387Google Scholar
  49. Wcislo W.T. and Danforth B.N. 1997. Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol. Evol. 12: 468–474Google Scholar
  50. Wcislo W.T. and Gonzalez V.H. 2006. Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae). Insect. Soc. 53: 220–225Google Scholar
  51. Wcislo W.T. and Tierney S.M. 2009. Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol. Rev. 84: 19–37Google Scholar
  52. West-Eberhard M.J. 1996. Wasp societies as microcosms for the study of development and evolution. In: Natural History and Evolution of Paper-Wasps (Turillazzi S. and West-Eberhard M.J., Eds), Oxford University Press, New York. pp 290–317Google Scholar
  53. Wille A. and Orozco E. 1970. The life cycle and behavior of the social bee Lasioglossum (Dialictus) umbripenne (Hymenoptera: Halictidae). Rev. Biol. Trop. 17: 199–245Google Scholar
  54. Wright S.J. and Calderon O. 1995. Phylogenetic patterns among flowering phenologies. J. Ecol. 83: 937–948Google Scholar
  55. Zayed A. and Packer L. 2002. Genetic differentiation across a behavioural boundary in a primitively eusocial bee, Halictus poeyi Lepeletier (Hymenoptera, Halictidae). Insect. Soc. 49: 282–288Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2013

Authors and Affiliations

  1. 1.Smithsonian Tropical Research InstitutePanamaRepublic of Panama
  2. 2.School of Biological SciencesFlinders UniversityAdelaideAustralia
  3. 3.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA
  4. 4.Department of Biological SciencesUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of Entomology and Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations