Insectes Sociaux

, Volume 60, Issue 1, pp 31–41 | Cite as

The diversity and host specificity of mites associated with ants: the roles of ecological and life history traits of ant hosts

Research Article

Abstract

Ant nests are stable resource patches that can be utilized by myrmecophiles (organisms living in association with ants). Mites are the most abundant guests in ant nests and are frequently observed in phoretic relationships with ants. Little is known about the effects of ecological and life history characteristics of ant hosts on mite species richness. Previous work focused on mite descriptions and provided little ecological information. Phoretic mites were surveyed for 43 ant species in 273 colonies in Ohio. Mite collections totaled 151 species including representatives of the cohorts Astigmatina and Heterostigmatina, and the suborder Mesostigmata. Most mite species had specific host species and attachment sites on the ants. Statistical analyses showed mite species richness to be highest in colonies of ant species that are (1) populous, (2) large bodied, (3) in the genus Lasius, and (4) established through social parasitism. The species richness was higher for ant species with social parasitism or the genus Lasius, but the relative importance of other host ecological and life history variables differed among mite taxa. Prevalence was greater for female ant alates than workers or males and was positively influenced by (1) host size, (2) social parasitism, and (3) the genus Lasius. These results suggest that greater ant diversity also supports a greater diversity of associated mites, but that mite diversity is disproportionately higher in ant species with greater resource availability within nests or those that may facilitate the exchange of mite assemblages among ant nests.

Keywords

Myrmecophiles Acari Symbiosis Biodiversity Lasius Social parasitism 

Supplementary material

40_2012_262_MOESM1_ESM.docx (76 kb)
Supplementary material 1 (DOCX 76 kb)

References

  1. Andersen A.N. and Majer J.D. 2004. Ants show the way down under: invertebrates as bioindicators in land management. Front. Ecol. Environ. 52: 291-298Google Scholar
  2. Beattie A.J. and Culver D.C. 1983. The nest chemistry of two seed-dispersing ant species. Oecologia 56: 99-103Google Scholar
  3. Berghoff S.M., Wurst E., Ebermann E., Sendova-Franks A.B., Rettenmeyer C.W. and Franks N.R. 2009. Symbionts of societies that fission: mites as guests or parasites of army ants. Ecol. Entomol. 34: 684-695Google Scholar
  4. Berlese A. 1904. Illustrazione iconografica degli Acari Mirmecofili. Redia 1: 299-474Google Scholar
  5. Berlese A. 1916. Centuria seconda di acari nuovi. Redia 12: 125-180Google Scholar
  6. Binns E.S. 1982. Phoresy as migration - some functional aspects of phoresy in mites. Biol. Rev. 57: 571-620Google Scholar
  7. Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H. and White J.S.S. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24: 127-35Google Scholar
  8. Boulton A.M., Jaffee B.A. and Scow K.M. 2003. Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Appl. Soil Ecol. 23: 257-265Google Scholar
  9. Burnham K.P. and Anderson D.R. 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (2nd ed). Springer, New YorkGoogle Scholar
  10. Coovert G.A. 2005. The Ants of Ohio. Ohio Biological Survey, Inc., Columbus, OhioGoogle Scholar
  11. Donisthorpe H.S.J.K. 1927. The Guests of British Ants their Habits and Life-Histories. George Routledge and Sons, Ltd., LondonGoogle Scholar
  12. Ebermann E. and Moser J.C. 2008. Mites (Acari: Scutacaridae) associated with the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), from Louisiana and Tennessee, U.S.A. Int. J. Acarol. 34: 55-69Google Scholar
  13. Eickwort G.C. 1990. Associations of mites with social insects. Annu. Rev. Entomol. 35: 469-488Google Scholar
  14. Gotwald W.H. Jr. 1996. Mites that live with army ants: a natural history of some myrmecophilous hitch-hikers, browsers and parasites. J. Kans. Entomol. Soc. 69: 232-237Google Scholar
  15. Hirschmann W. 1993. Gangsystematik der Parasitiformes. Teil 550. Bestimmungstabellen der Uropodiden der Erde, Atlas der Ganggattungen der Atrichopygidiina. Acarol., Schrift. vgl. Milbenkunde, Nürn. 40: 292-370Google Scholar
  16. Houck M.A. and OConnor B.M. 1991. Ecological and evolutionary significance of phoresy in the Astigmata. Annu. Rev. Entomol. 36: 611-636Google Scholar
  17. Hölldobler B. and Wilson E.O. 1990. The Ants, Harvard Press, CambridgeGoogle Scholar
  18. Hunter J.E.III and Farrier M.H. 1975. Mites in the genus Oplitis (Acarina: Uropodidae) associated with ants (Hymenoptera: Formicidae) of the southeastern United States. Part I. Acarologia 17: 595-623Google Scholar
  19. Hunter J.E.III and Farrier M.H. 1976. Mites in the genus Oplitis (Acarina: Uropodidae) associated with ants (Hymenoptera: Formicidae) of the southeastern United States. Part II. Acarologia 18: 20-50Google Scholar
  20. Hunter P.E. and Glover S.J. 1968. Hypoaspis (Laelaspis) Mites from North America and Mexico (Acarina: Dermanyssidae; Laelapinae). Fla. Entomol. 51: 63-73Google Scholar
  21. Ivanov K. 2012. Ohio ants. AntWeb. http://www.antweb.org/ohio.jsp. Accessed 10 March 2012.
  22. Karg W. 1989. Acari (Acarina), Milben, Unterordnung Parasitiformes (Anactinochaeta), Uropodina Kramer, Schildkrötenmilben (Vol. 67). Die Tierwelt. Dtschl., Jena., Gustav Fischer VerlagGoogle Scholar
  23. Khaustov A.A. and Moser J.C. 2008. Two new species of mites of the genera Petalomium Cross and Caesarodispus Mahunka (Acari: Heterostigmata: Neopygmephoridae, Microdispidae) associated with Solenopsis invicta Buren (Hymenoptera: Formicidae) from the U.S.A. Intern. J. Acarol. 34: 115-121Google Scholar
  24. Kistner D.H. 1979. Social and evolutionary significance of social insect symbionts. In: Social Insects (Vol. 1) (H.R. Hermann, Ed), Academic Press, New York. pp 340-413Google Scholar
  25. Krantz G.W. and Ainscough B.D. 1990. Acarina: Mesostigmata (Gamasida). In: Soil Biology Guide (D.L. Dindal, Ed), John Wiley and Sons, Inc., New York. pp 583-665Google Scholar
  26. Laakso J. and Setälä H. 1998. Composition and trophic structure of detrital food web in ant nest mounds of Formica aquilonia and in the surrounding forest soil. Oikos 81: 266-278Google Scholar
  27. Lehtinen P.T. 1987. Association of uropodid, prodinychid, polyaspidid, antennophorid, sejid, microgynid, and zerconid mites with ants. Entomol. Tidskr. 108: 13-20Google Scholar
  28. MacArthur R.H. and Wilson E.O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJGoogle Scholar
  29. Mahunka S. 1970. Considerations on the systematics of the Tarsonemina and the description of new European taxa (Acari: Trombidiformes). Acta Zool. Acad. Sci. Hung. 16: 137-174Google Scholar
  30. Margolis L., Esch G.W., Holmes J.C., Kuris A.M. and Schad G.A. 1982. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J. Parasitol. 68: 131-133Google Scholar
  31. McGlynn T.P., Carr R.A., Carson J.H. and Buma J. 2004. Frequent nest relocation in the ant Aphaenogaster araneoides: resources, competition, and natural enemies. Oikos 106: 611-621Google Scholar
  32. Moser J.C. and Blomquist S.R. 2011. Phoretic arthropods of the red imported fire ant in central Louisiana. Ann. Entomol. Soc. Am. 104: 886-894Google Scholar
  33. OConnor B.M. 1982. Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27: 385-409Google Scholar
  34. OConnor B.M. 2009. Cohort Astigmatina. In: A Manual of Acarology (G.W. Krantz and D.E. Walter, Eds).Texas Tech University Press, Lubbock, TX. pp 565-657 & 16Google Scholar
  35. R Development Core Team 2009. The R foundation for Statistical Computing, ver 2.10. Vienna, Austria: Vienna University of Technology. http://www.r-project.org/.
  36. Raczkowski J.M. and Luque G.M. 2011. Colony founding and social parasitism in Lasius (Acanthomyops). Insect. Soc. 58: 237-244Google Scholar
  37. Rettenmeyer C.W. 1962a. Arthropods associated with neotropical army ants with a review of the behavior of these ants (Arthropoda; Formicidae: Dorylinae). University of Kansas, Lawrence, KSGoogle Scholar
  38. Rettenmeyer C.W. 1962b. Notes on host-specificity and behavior of myrmecophilous Macrochelid mites. J. Kans. Entomol. Soc. 35: 358-360Google Scholar
  39. Rettenmeyer C.W., Rettenmeyer M.E., Joseph J. and Berghoff S.M. 2011. The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insect. Soc. 58: 281-292Google Scholar
  40. Savulkina M.M. 1981. Systematics, ecology, and distribution of mites of the family Pygmephoridae Cross, 1965 (Acari, Trombidiformes). Entomol. Rev. 60: 163-180Google Scholar
  41. Schlick-Steiner B.C., Steiner F.M., Konrad H., Seifert B., Christian E., Moder K., Stauffer C. et al. 2008. Specificity and transmission mosaic of ant nest-wall fungi. Proc. Natl. Acad. Sci. 105: 940-943Google Scholar
  42. Smallwood J. 1982. Nest relocations in ants. Insect. Soc. 29: 138-147Google Scholar
  43. Uppstrom K.A. and Klompen H. 2011. Mites (Acari) associated with the desert seed harvester ant, Messor pergandei (Mayr). Psyche 2011: 1-7Google Scholar
  44. Wagner D., Brown M.J.F. and Gordon D.M. 1997. Harvester ant nests, soil biota and soil chemistry. Oecologia 112: 232-236Google Scholar
  45. Wirth S. and Moser J.C. 2010. Histiostoma blomquisti n. sp. (Acari: Astigmata: Histiostomatidae), a phoretic mite of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Acarologia 50: 357-371Google Scholar
  46. Witte V., Leingärtner A., Sabaß L., Hashim R. and Foitzik S. 2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76: 1477-1486Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2012

Authors and Affiliations

  1. 1.Department of ZoologyMiami UniversityOxfordUSA
  2. 2.Acarology LaboratoryOhio State UniversityColumbusUSA
  3. 3.Institute for the Environment and SustainabilityMiami UniversityOxfordUSA

Personalised recommendations