Insectes Sociaux

, Volume 59, Issue 4, pp 479–486 | Cite as

Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata

  • A. A. Borges
  • M. J. Ferreira-Caliman
  • F. S. Nascimento
  • L. A. O. Campos
  • M. G. Tavares
Research Article

Abstract

Males, queens and workers of stingless bees show differences in external morphology, behaviour and roles within a colony. In addition, each individual has a cuticular chemical signature responsible for mutual communication that is essential for maintaining the integrity of the colony. In this paper we characterize the cuticular hydrocarbon composition of newly emerged diploid and haploid males, workers and virgin queens of Melipona quadrifasciata by gas chromatography-mass spectrometry (GC/MS) analysis. This is the first time that the cuticular profile of diploid males in a species of stingless bee has been characterized. We found differences in the cuticular hydrocarbon composition among males, workers and virgin queens, recording both qualitative and quantitative differences among individuals of different phenotypes. However, no compound was found exclusively in diploid males. The cuticular chemical profiles of haploid and diploid males were very similar to those of workers. Moreover, the cuticular lipids of males and workers were significantly different from those of queens. Tricosane, pentacosene-2 and 7-methyl-heptacosane were the compounds responsible for this significant separation. This result correlates with the behavioural and morphological differences among these phenotypes.

Keywords

Cuticular lipids Diploid male Gas chromatography-mass spectrometry Meliponines 

References

  1. Abdalla F.C., Jones G.R., Morgan E.D. and Cruz-Landim C. 2003. Comparative study of the cuticular hydrocarbon composition of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Meliponini) workers and queens. Genet. Mol. Res. 2: 191–199Google Scholar
  2. Almeida M.G. 1985. Sex determination in bees. XXII. Generalized Malahanobis distances between males and females of the stingless bee Melipona scutellaris Latreille 1811. Rev. Bras. Genet. 8: 603–608Google Scholar
  3. Armitage S., Boomsma J. and Baer B. 2010. Diploid male production in a leaf-cutting ant. Ecol. Entomol. 35: 175–182Google Scholar
  4. Blomquist G.J. and Bagnères A.G.B.A. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University PressGoogle Scholar
  5. Bonetti A.M. and Kerr W.E. 1985. Estudo da ação gênica em Melipona marginata e Melipona compressipes a partir de análise morfológica. Rev. Bras. Genet. 8: 629–638Google Scholar
  6. Carlson D.A. 1989. Dimethyl disulfide derivates of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61: 1564–1571Google Scholar
  7. Carlson D.A., Offor I.I., El Messoussi S., Matsuyama K., Mori K. and Jallon J.M. 1998. Sex pheromone of Glossina tachinoides: isolation, identification and synthesis. J. Chem. Ecol. 24: 1563–1574Google Scholar
  8. Carlson D.A., Geden C.J. and Bernier U.R. 1999. Identification of pupal exuviae of Nasonia vitripennis and Muscidifurax raptorellus parasitoids using cuticular hydrocarbons. Biol. Control 15: 97–106Google Scholar
  9. Camargo C.A. 1979. Sex determination in bees. XI. Production of diploid males and sex determination in Melipona quadrifasciata. J. Apic. Res. 18: 77–83Google Scholar
  10. Camargo C.A. 1982. Longevity of diploid males, haploid males, and workers of the social bee Melipona quadrifasciata, Hymenoptera, Apidae. J. Kansas Entomol. Soc. 55: 8–12Google Scholar
  11. Camargo C.A. 1984. Spermatozoa numbers and migration to the 387 seminal vesicles in haploid and diploid males of Melipona quadrifasciata Lep. J. Apic. Res. 23: 15–17Google Scholar
  12. Campos L.A.O. 1978. Sex determination in bees. VI. Effect of a juvenile hormone analogue in males and females of Melipona quadrifasciata (Apidae). J. Kansas Entomol. Soc. 51: 228–234Google Scholar
  13. Cortopassi-Laurino M. 1979. Observações sobre a atividade de machos de Plebeia droryana Friese (Apidae, Meliponinae). Rev. Bras. Entomol. 2: 177–191Google Scholar
  14. Dietz A. and Lovins R.W. 1975. Studies on the ‘cannibalism substance’ of diploid drone honeybee larvae. J. Georgia Entomol. Soc. 10: 314–315Google Scholar
  15. Engels E. and Engels W. 1988. Age-dependent queen attractiveness for drones and mating in the stingless bees, Scaptotrigona postica. J. Apic. Res. 27: 3–8Google Scholar
  16. Ferreira-Caliman M.J., Nascimento F.S., Turatti I.C., Mateus S., Lopes N.P. and Zucchi R. 2010. The cuticular hydrocarbons profiles in the stingless bee Melipona marginata reflect task-related differences. J. Insect Physiol. 56: 800–804Google Scholar
  17. Francisco F.O., Nunes-Silva P., Francoy T.M., Wittmann D., Imperatriz-Fonseca V.L, Arias M.C. and Morgan E.D. 2008. Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insect. Soc. 55: 231–237Google Scholar
  18. Gibbs A.G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48: 391–400Google Scholar
  19. Green C.L. and Oldroyd B.P. 2002. Queen mating frequency and maternity of males in the stingless bee Trigona carbonaria Smith. Insect. Soc. 49: 196–202Google Scholar
  20. Hermann M., Trenzcek T., Fahrenhorst H. and Engels W. 2005. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones. Genet. Mol. Res. 4: 624–641Google Scholar
  21. Herzner G., Schmitt T., Heckel F., Schreier P. and Strohm E. 2006. Brothers smell similar: variation in the sex pheromone of male European beewolves Philanthus triangulum F. (Hymenoptera: Cabronidae) and its implications for inbreeding avoidance. Biol. J. Linn. Soc. 89: 433–442Google Scholar
  22. Howard R.W. and Blomquist G.J. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Annu. Rev. Entomol. 27: 149–172Google Scholar
  23. Howard R.W. and Blomquist G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50: 371–393Google Scholar
  24. Imai H., Taylor R.W., Crosland M.W.J. and Crozier R.H. 1988. Modes of spontaneous evolution in ants with reference to the minimum interaction hypothesis. Jpn. J. Genet. 63: 159–185Google Scholar
  25. Jackson L.L. and Baker G.L. 1970. Cuticular lipids of insects. Lipids 5: 239–246Google Scholar
  26. Jungnickel H., Da Costa A.J.S., Tentschert J., Patricio E.F.L.R.A., Imperatriz-Fonseca V.L., Drijfhout F. and Morgan E.D. 2004. Chemical basis for inter-colonial aggression in the stingless bee Scaptotrigona bipunctata (Hymenoptera: Apidae). J. Insect Physiol. 50: 761–766Google Scholar
  27. Kerr W.E. 1987. Sex determination in bees. XXI. Number of XO-heteroalleles in a natural population of Melipona compressipes fasciculata (Apidae). Insect. Soc. 34: 274–279Google Scholar
  28. Kerr W.E. 1997. Sex determination in bees (Apinae, Meliponinae) and its consequences. Braz. J. Genet. 20: 601–612Google Scholar
  29. Kerr W.E., Jungnickel H. and Morgan E.D. 2004. Workers of the stingless bee Melipona scutellaris are more similar to males than to queens in their cuticular compounds. Apidologie 35: 611–618Google Scholar
  30. Lockey K.H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B: 595–645Google Scholar
  31. Michener C.D. 1974. The Social Behavior of the Bees. Harvard University Press, MassachusettsGoogle Scholar
  32. Nelson D.R., Dillwith J.W. and Blomquist G.J. 1981. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 11: 187–197Google Scholar
  33. Nelson D.R. and Blomquist G.J. 1995. Insect waxes. In: Waxes: Chemistry, Molecular Biology and Functions (Hamilton R.J., Ed), Dundee, Oily Press. pp 1–90Google Scholar
  34. Nogueira-Neto P. 1997. Vida e Criação de Abelhas Indígenas sem Ferrão. Editora Nogueirapis. São PauloGoogle Scholar
  35. Nunes T.M., Turatti I.C., Mateus S., Nascimento F.S., Lopes N.P. and Zucchi R. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Genet. Mol. Res. 8: 589–595Google Scholar
  36. Paxton R.J., Bego L.R., Shah M.M. and Mateus S. 2003. Low mating frequency of queens in the stingless bee Scaptotrigona postica and worker maternity of males. Behav. Ecol. Sociobiol. 53: 174–181Google Scholar
  37. Pianaro A., Flach A., Patricio E.F.L.R.A., Nogueira-Neto P. and Marsaioli A.J. 2007. Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. J. Chem. Ecol. 33: 971–984Google Scholar
  38. Provost E., Blight O., Tirard A. and Renucci M. 2008. Hydrocarbons and insects’ social physiology. In: Insect Physiology: New Research (Maes R.P., Ed), Nova Science Publishers, New York. pp 19–72Google Scholar
  39. Ratnieks F.L.W. 1990. The evolution of polyandry by queens in social Hymenoptera: the significance of the timing of removal of diploid males. Behav. Ecol. Sociobiol. 26: 343–348Google Scholar
  40. Reyment R. 1989. Compositional data analysis. Terra Review 1: 29–34Google Scholar
  41. Roubik D.W., Weight L.A. and Bonilla M.A. 1996. Population genetics, diploid males, and limits to social evolution of Euglossine bees. Evolution 50: 931–935Google Scholar
  42. Sakagami S.F. and Zucchi R. 1974. Oviposition behavior of two dwarf stingless bees, Hypotrigona (Leurotrigona) muelleri and H. (Trigonisca) duckei, with notes on the temporal articulation of oviposition process in stingless bees. J. Fac. Sci. 19: 361–421Google Scholar
  43. Santomauro G., Oldham N.J., Boland W. and Engels W. 2004. Cannibalism of diploid drone larvae in the honey bee (Apis mellifera) is released by odd pattern of cuticular substances. J. Apic. Res. 43: 69–74Google Scholar
  44. Silva D.L.N. 1977. Estudos bionômicos em colônias mistas de Meliponinae (Hymenoptera, Apoidea). Bol. Zool. Univ. São Paulo 2: 7–106Google Scholar
  45. Tarelho Z.F.S. 1973. Contribuição ao estudo citogenético dos Apoidea. University of São Paulo, BrasilGoogle Scholar
  46. Tavares M.G., Irsigler A.S.T., Campos L.A.O. 2003. Testis length distinguishes haploid from diploid drones in Melipona quadrifasciata (Hymenoptera: Meliponinae). Apidologie 34: 449–455Google Scholar
  47. Tavares M.G., Carvalho C.R., Soares F.A.F. and Fernandes A. 2010. Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp. (Hymenoptera, Apidae). Genet. Mol. Biol. 33: 491–493Google Scholar
  48. van Veen J.W., Sommeijer M.J. and Meeuwsen F. 1997. Behaviour of drones in Melipona (Apidae, Meliponinae). Insect. Soc. 44: 435–447Google Scholar
  49. Velthuis H.H.W., Koedam D. and Imperatriz-Fonseca V.L. 2005. The males of Melipona and other stingless bees, and their mothers. Apidologie 36: 169–185Google Scholar
  50. Whiting P.W. 1939. Sex determination and reproductive economy in Habrobracon. Genetics 24: 110–111Google Scholar
  51. Wigglesworth V.B. 1964. The life of insects. In: The World Natural History (Carrington R., Ed), The New American Library, New York. pp 383Google Scholar
  52. Wigglesworth V.B. 1970. Structural lipids in the insect cuticle and the function the oenocytes. Tissue Cell 2: 155–179Google Scholar
  53. Woyke J. 1963. What happens to the diploid drones larvae in a honey bee colony. J. Apic. Res. 2: 73–75Google Scholar
  54. Woyke J. 1967. Diploid drone substance - cannibalism substance. Proc. XXI Int. Beekeeping Congr. Maryland, pp 471–472Google Scholar
  55. Woyke J. 1980. Evidence and action of cannibalism substance in Apis cerana indica. J. Apic. Res. 19: 6–16Google Scholar
  56. Zayed A., Roubik D.W. and Packer L. 2003. Use of diploid male frequency data as an indicator of pollinator decline. Proc. R. Soc. Lond. B Suppl 271: S9–S12Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2012

Authors and Affiliations

  • A. A. Borges
    • 1
  • M. J. Ferreira-Caliman
    • 2
  • F. S. Nascimento
    • 2
  • L. A. O. Campos
    • 1
  • M. G. Tavares
    • 1
  1. 1.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de Biologia, Faculdade de FilosofiaCiências e Letras de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil

Personalised recommendations