Insectes Sociaux

, Volume 59, Issue 4, pp 445–452 | Cite as

The social biology of domiciliary cockroaches: colony structure, kin recognition and collective decisions

  • M. LihoreauEmail author
  • J. T. Costa
  • C. Rivault
Review Article


A substantial body of research on eusocial insects seen in the last decades has gone hand-in-hand with the development of social evolution theory. In contrast, little attention has been given to the non-eusocial insect species that nevertheless exhibit a rich spectrum of social behaviours, thus effectively skewing our vision of insect sociality. Recent studies on the behaviour, ecology and genetic of “gregarious” cockroaches (Blattodea) have revealed a diversity of social structures and group dynamics unique among insects, providing an important comparative model for the broader understanding of insect social evolution. Here, we present an overview of the social biology of the domiciliary cockroaches (ca. 25 species adapted to human habitats) based on research on two model species, Blattella germanica and Periplaneta americana. We discuss the evolution of these domiciliary cockroaches, considering them in the context of “social herds” within the insect sociality framework.


Domiciliary cockroaches Isolation syndromes Kin recognition Collective decisions Social insects Pathway pluralism 



M.L. was supported by a postgraduate grant from the French Ministry of Research and a postdoctoral fellowship from the Australian Research Council. J.T.C.’s work on insect social evolution was supported by Western Carolina University, the US Department of Agriculture, and the Radcliffe Institute for Advanced Study, Harvard University. C.R. was funded by the Centre National pour la Recherche Scientifique.


  1. Amé J.M., Halloy J., Rivault C., Detrain C. and Deneubourg J.L. 2006. Collegial decision making based on social amplification leads to optimal group formation. Proc. Natl Acad. Sci. U.S.A. 103: 5835-5840Google Scholar
  2. Amé J.M., Rivault C. and Deneubourg J.L. 2004. Cockroach aggregation based on strain odour recognition. Anim. Behav. 68: 793-801Google Scholar
  3. Appel A.G. and Rust M.K. 1985. Outdoor activity and distribution of the smokybrown cockroach, Periplaneta fuliginosa (Dictyoptera: Blattidae). Environ. Entomol. 14: 669-673Google Scholar
  4. Appel A.G. and Smith L.M. 1996. Harborage preferences of American and smokybrown cockroaches (Dictyoptera: Blattidae) for common landscape materials. Environ. Entomol. 25: 817-824Google Scholar
  5. Bell W.J. and Adiyodi K.G. 1982. The American Cockroach. Chapman & Hall, London.Google Scholar
  6. Bell W.J., Roth L.M. and Nalepa C.A. 2007. Cockroaches: Ecology, Behavior, and Natural History. John Hopkins University Press, Baltimore London.Google Scholar
  7. Bignell D.E., Roisin Y. and Lo N. 2010. Biology of Termites: a Modern Synthesis. Springer, Heidelberg.Google Scholar
  8. Booth W., Santangelo R.G., Vargo E.L., Mukha D.V. and Schal C. 2011. Population genetic structure in German cockroaches (Blattella germanica): differentiated islands in an agricultural landscape. J. Hered. 102: 175-183Google Scholar
  9. Bourke A.F.G. 2011. Principles of Social Evolution. Oxford University Press, Oxford.Google Scholar
  10. Bourke A.F.G. and Franks N.R. 1995. Social Evolution in Ants. Princeton University Press, Princeton.Google Scholar
  11. Breed M.D., Hinkle C.M. and Bell W.J. 1975. Agonistic behavior in the German cockroach, Blattella germanica. Z. Tierpsychol. 39: 24-32Google Scholar
  12. Canonge S., Deneubourg J.L. and Sempo G. 2011. Group living enhances individual resources discrimination: the use of public information by cockroaches to assess shelter quality. PLoS ONE 6: e19748Google Scholar
  13. Canonge S., Sempo G., Jeanson R., Detrain C. and Deneubourg J.L. 2009. Self-amplification as a source of interindividual variability: shelter selection in cockoaches. J. Insect Physiol. 55: 976-982Google Scholar
  14. Carlson D.A. and Brenner R.J. 1988. Hydrocarbon-based discrimination of three North American Blattella cockroach species (Orthoptera: Blattellidae) using gas chromatography. Ann. Entomol. Soc. Am. 81: 711-723Google Scholar
  15. Charlton R.E., Webster F.X., Zhang A., Schal C., Liang S.D., Sreng L. and Roelofs W.L. 1993. Sex pheromone for the brownbanded cockroach is an unusual dialkyl-substituted alpha-pyrone. Proc. Natl Acad. Sci. U.S.A. 90: 10202-10205Google Scholar
  16. Chauvin R. 1946. Notes sur la physiologie comparée des Orthoptères. V. L’effet de groupe et la croissance larvaire des blattes, des grillons et du Phanéroptère. Bull. Soc. Zool. France 71: 39-48Google Scholar
  17. Choe J.C. and Crespi B.J. 1997. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge.Google Scholar
  18. Cloarec A., Rivault C. and Cariou L. 1999. Genetic population structure of the German cockroach, Blattella germanica: absence of geographical variation. Entomol. Exp. Appl. 92: 311-319Google Scholar
  19. Clutton-Brock T. 2009. Cooperation between non-kin in animal societies. Nature 462: 51-57Google Scholar
  20. Conradt L. and Roper T.J. 2005. Consensus decision making in animal. Trends Ecol. Evol. 20: 459-456Google Scholar
  21. Cornwell P.B. 1968. The Cockroach. Vol.1. Hutchinson, London.Google Scholar
  22. Costa J.T. 2006. The Other Insect Societies. Harvard University Press, Cambridge.Google Scholar
  23. Costa J.T. and Fitzgerald T.D. 1996. Developments in social terminology: semantic battles in a conceptual war. Trends Ecol. Evol. 11: 285-289Google Scholar
  24. Crissman J.R., Booth W., Santangelo R.G., Mukha D.V., Vargo E.L. and Schal C. 2010. Population genetic structure of the German cockroach (Blattodea: Blattellidae) in apartment buildings. Med. Vet. Entomol. 47: 553-564Google Scholar
  25. Croft D.P., James R. and Krause J. 2007. Exploring Animal Social Networks. Princeton University Press, Princeton.Google Scholar
  26. Dambach M. and Goehlen B. 1999. Aggregation density and longevity correlate with humidity in first-instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). J. Insect Physiol. 45: 423-429Google Scholar
  27. Danchin E., Giraldeau L.A., Valone T.J. and Wagner R.H. 2004. Public information: from nosy neighbors to cultural evolution. Science 305: 487-491Google Scholar
  28. Davis R.B., Badaulf S.L. and Mayhew P.J. 2009. Eusociality and the success of the termites: insights from a supertree of dictyopteran families. J. Evol. Biol. 22: 1750-1761Google Scholar
  29. Durier V. and Rivault C. 2001. Effects of spatial knowledge and feeding experience on foraging choices in German cockroaches. Anim. Behav. 62: 681-688Google Scholar
  30. Eickwort G.C. 1981. Presocial insects. In: Social Insects (Hermann H.R., Ed), Academic Press, New-York. pp 199-280Google Scholar
  31. Farine J.P., Everaerts C., Le Quere J.L., Semon E., Henry R. and Brossut R. 1997. The defensive secretion of Eurycotis floridana (Dictyoptera, Blattidae, Polyzosteriinae): chemical identification and evidence of an alarm function. Insect Biochem. Mol. Biol. 27: 577-586Google Scholar
  32. Faulde M., Fuchs M.E.A. and Nagl W. 1990. Further characterization of a dispersion-inducing contact pheromone in the saliva of the German cockroach, Blattella germanica L. (Blattodea, Blattellidae). J. Insect Physiol. 36: 353-359Google Scholar
  33. Gadau J. and Fewell J. 2009. Organization of Insect Societies: from Genome to Sociocomplexity. Harvard University Press, Cambridge.Google Scholar
  34. Gadot M., Burns J.G. and Schal C. 1989. Juvenile hormone biosynthesis and oocyte development in adult female Blattella germanica: effects of grouping and mating. Arch. Insect Biochem. Physiol. 11: 189-200Google Scholar
  35. Grassé P.P. 1946. Sociétés animales et effet de groupe. Experientia 2: 77-82Google Scholar
  36. Haldane J.B.S. 1955. Population genetics. New Biol. 18: 34-51Google Scholar
  37. Halloy J., Sempo G., Caprari G., Rivault C., Asadpour M., Tâche F., Saïd I., Durier V., Canonge S., Amé J.M., Detrain C., Correll N., Martinoli A., Mondada F., Siegwart R. and Deneubourg J.L. 2007. Social integration of robots into groups of cockroaches to control self-organized choices. Science 318: 1055-1058Google Scholar
  38. Hamilton W.D. 1964. The genetical evolution of social behaviour, I & II. J. Theor. Biol. 7: 1-52Google Scholar
  39. Holbrook G.L., Armstrong E., Bachmann J.A.S., Deasy B.M. and Schal C. 2000. Role of feeding in the reproductive “group effect” in females of the German cockroach Blattella germanica (L.). J. Insect Physiol. 46: 941-949Google Scholar
  40. Inward D., Beccaloni G. and Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3: 331-335Google Scholar
  41. Izutsu M., Ueda S. and Ishii S. 1970. Aggregation effects on the growth of the German cockroach Blattella germanica (L.) (Blattaria: Blattellidae). Appl. Entomol. Zool. 5: 159-171Google Scholar
  42. Jackson L.L. 1972. Cuticular lipids of insects. IV: Hydrocarbons of the cockroaches Periplaneta japonica and Periplaneta americana compared to other cockroach hydrocarbons. Comp. Biochem. Physiol. B. 41: 331-336Google Scholar
  43. Jeanson R. and Deneubourg J.L. 2006. Path selection in cockroaches. J. Exp. Biol. 209: 4768-4775Google Scholar
  44. Jeanson R. and Deneubourg J.L. 2007. Conspecific attraction and shelter selection in gregarious insects. Am. Nat. 170: 47-58Google Scholar
  45. Jeanson R., Rivault C., Deneubourg J.L., Blanco S., Fournier R., Jost C. and Theraulaz G. 2005. Self-organized aggregation in cockroaches. Anim. Behav. 69: 169-180Google Scholar
  46. Jones S.A. and Raubenheimer D. 2001. Nutritional regulation in nymphs of the German cockroach, Blattella germanica. J. Insect Physiol. 47: 1169-1180Google Scholar
  47. Jurenka R.A., Schal C., Burns E., Chase J. and Blomquist G.J. 1989. Structural correlation between cuticular hydrocarbons and female contact sex pheromone of German cockroach Blattella germanica L. J. Chem. Ecol. 15: 939-949Google Scholar
  48. Korb J. and Heinze J. 2008. Ecology of Social Evolution. Springer, Heidelberg.Google Scholar
  49. Krause J. and Ruxton G.D. 2002. Living in Groups. Oxford University Press, Oxford.Google Scholar
  50. Lihoreau M. and Rivault C. 2008. Tactile stimuli trigger group effect in cockroach aggregations. Anim. Behav. 75: 1965-1972Google Scholar
  51. Lihoreau M. and Rivault C. 2009. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20: 46-53Google Scholar
  52. Lihoreau M. and Rivault C. 2010. German cockroach males maximize their inclusive fitness by avoiding mating with kin. Anim. Behav. 20: 303-309Google Scholar
  53. Lihoreau M. and Rivault C. 2011. Local enhancement promotes cockroach feeding aggregations. PLoS ONE 6: e22048Google Scholar
  54. Lihoreau M., Brepson L. and Rivault C. 2009. The weight of the clan: even in insects, social isolation can induce a behavioural syndrome. Behav. Proc. 82: 81-84Google Scholar
  55. Lihoreau M., Deneubourg J.L. and Rivault C. 2010. Collective foraging decision in a gregarious insect. Behav. Ecol Sociobiol. 64: 1577-1587Google Scholar
  56. Lihoreau M., Zimmer C. and Rivault C. 2008. Mutual mate choice: when it pays both sexes to avoid inbreeding. PLoS ONE 3: e3365Google Scholar
  57. Lihoreau M., Zimmer C. and Rivaut C. 2007. Kin recognition and incest avoidance in a group-living insect. Behav. Ecol. 18: 880-887Google Scholar
  58. Lockey K.H. and Dularay B. 1986. Cuticular methylalkanes of adult cockroaches Blatta orientalis and Periplaneta americana. Comp. Biochem. Physiol. B. 85: 567-572Google Scholar
  59. Maekawa K., Matsumoto T. and Nalepa C.A. 2008. Social biology of the wood-feeding cockroach genus Salganea (Dictyoptera, Blaberidae, Panesthiinae): did ovoviviparity prevent the evolution of eusociality in the lineage? Insect. Soc. 55: 107-114Google Scholar
  60. Miller D.M. and Koehler P.G. 2000. Trail-following behavior in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 93: 1241-1246Google Scholar
  61. Nakayama Y., Suto C. and Kumada N. 1984. Further studies on the dispersion-inducing substances of the German cockroach Blattella germanica (L.) (Blattaria: Blattellidae). Appl. Entomol. Zool. 19: 227-236Google Scholar
  62. Nakaï Y. and Tsubaki Y. 1986. Factors accelerating the development of German cockroach Blattella germanica nymphs reared in groups. Jpn. J. Appl. Entomol. Zool. 30: 1-6Google Scholar
  63. Nalepa C.A. 1984. Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav. Ecol. 14: 273-279Google Scholar
  64. Nalepa C.A. and Bell W.J. 1997. Postovulation parental investment and parental care in cockroaches. In: Evolution of Social Behaviours in Insects and Arachnids (Choe J.C. and Crespi B.J., Eds), Cambridge University Press, Cambridge. pp 26-51Google Scholar
  65. Nojima S., Schal C., Webster F.X., Santangelo R.G. and Roelofs W.L. 2005. Identification of the sex pheromone of the German cockroach, Blattella germanica. Science 307: 1104-1106Google Scholar
  66. Okada K., Mori M., Shimazaki K. and Chuman T. 1990. Behavioral responses of male Periplaneta americana L. to female sex pheromone components, periplanone-A and periplanone-B. J. Chem. Ecol. 16: 2605-2614Google Scholar
  67. Olomon C.M., Breed M.D. and Bell W.J. 1976. Ontogenetic and temporal aspects of agonistic behavior in a cockroach Periplaneta americana. Behav. Biol. 17: 243-248Google Scholar
  68. Owens J.M. and Bennett G.W. 1982. German cockroach (Orthoptera, Blattellidae) movement within and between urban apartments. J. Econ. Entomol. 75: 570-573Google Scholar
  69. Rivault C. 1989. Spatial distribution of the cockroach, Blattella germanica, in a swimming-bath facility. Entomol. Exp. Appl. 53: 247-255Google Scholar
  70. Rivault C. 1990. Distribution dynamics of Blattella germanica in a closed urban environment. Entomol. Exp. Appl. 57: 85-91Google Scholar
  71. Rivault C. and Cloarec A. 1992. Agonistic interactions and exploitation of limited food sources in Blattella germanica (L.). Behav. Proc. 26: 91-102Google Scholar
  72. Rivault C. and Cloarec A. 1998. Cockroach aggregation: discrimination between strain odours in Blattella germanica. Anim. Behav. 55: 177-184Google Scholar
  73. Rivault C., Cloarec A. and Sreng L. 1998. Cuticular extracts inducing aggregation in the German cockroach, Blattella germanica (L.). J. Insect Physiol. 44: 909-918Google Scholar
  74. Ross R.H. and Mullins D.E. 1995. Biology. In: Understanding and Controlling the German Cockroach (Rust M.K., Owens J.M. and Reierson D.A., Eds). Oxford University Press, Oxford. pp 21-47Google Scholar
  75. Ross M.H. and Tignor K.R. 1986. Response of German cockroaches to aggregation pheromone emitted by adult females. Entomol. Exp. Appl. 41: 25-31Google Scholar
  76. Ross M.H., Bret B.L. and Keil C.B. 1984. Population growth and behavior of Blattella germanica (L.) in experimentally established shipboard infestations. Ann. Entomol. Soc. Am. 77: 740-752Google Scholar
  77. Ross M.H., Keil C.B. and Cochran D.G. 1981. The release of sterile males into natural populations of the German cockroach Blattella germanica. Entomol. Exp. Appl. 30: 241-253Google Scholar
  78. Roth L. and Willis E.R. 1960. The biotic associations of cockroaches. Smith. Misc. Coll. 141: 1-470Google Scholar
  79. Roth S., Fromm B., Gäde G. and Predel R. 2009. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient taxa (Dictyoptera, Blattoptera) as a test case. BMC Evol. Biol. 9: 1-12Google Scholar
  80. Rust M.K., Owens J.M. and Reireson D.A. 1995. Understanding and Controlling the German Cockroach. Oxford University Press, Oxford.Google Scholar
  81. Saïd I., Costagliola G., Leoncini I. and Rivault C. 2005a. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003Google Scholar
  82. Saïd I., Gaertner C., Renou M. and Rivault C. 2005b. Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta: Dictyoptera). J. Insect Physiol. 51: 1384-1389Google Scholar
  83. Sempo G., Canonge S., Detrain C. and Deneubourg J.L. 2009. Complex dynamics based on a quorum: decision-making process by cockroaches in a patchy environment. Ethology 115: 1150-1161Google Scholar
  84. Sempo G., Depickère S., Amé J.M., Detrain C., Halloy J. and Deneubourg J.L. 2006. Integration of an autonomous artificial agent in an insect society: experimental validation. Lect. Notes Artif. Int. 4095: 703-712Google Scholar
  85. Sumpter D.J.T. 2010. Collective Animal Behaviour. Princeton University Press, Princeton.Google Scholar
  86. Sumpter D.J.T. and Pratt S.C. 2009. Quorum responses and consensus decision making. Phil. Trans. R. Soc. B. 364: 743-753Google Scholar
  87. Tallamy D.W. and Wood T.K. 1986. Convergence patterns in subsocial insects. Annu. Rev. Entomol. 31: 369-390Google Scholar
  88. Tee H.S., Saad A.R. and Lee C.Y. 2011. Population ecology and movement of the American cockroach (Dictyoptera: Blattidae) in sewers. J. Med. Entomol. 48: 797-805Google Scholar
  89. West S.A., Griffin A.S. and Gardner A. 2007. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20: 415-432Google Scholar
  90. Wey T., Blumstein D.T., Shen W. and Jordán F. 2008. Social network analysis of animal behavior: a promising tool for the study of sociality. Anim. Behav. 75: 333-344Google Scholar
  91. Wilson E.O. 1971. The Insect Societies. Belknap Press, CambridgeGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2012

Authors and Affiliations

  1. 1.Unité Mixte de Recherche 6552, Centre National de la Recherche ScientifiqueUniversité de Rennes 1RennesFrance
  2. 2.School of Biological Sciences and the Charles Perkins CentreThe University of SydneySydneyAustralia
  3. 3.Department of BiologyWestern Carolina UniversityCullowheeUSA
  4. 4.Highlands Biological StationHighlandsUSA

Personalised recommendations