Advertisement

Insectes Sociaux

, Volume 59, Issue 3, pp 361–368 | Cite as

The spatial distribution does not affect host–parasite coevolution in Rossomyrmex ants

  • O. SanllorenteEmail author
  • P. Lorite
  • S. Devers
  • F. Ruano
  • A. Lenoir
  • A. Tinaut
Research Article

Abstract

Host and parasite distributions are crucial to understand the coevolutionary outcomes of their relationships. This comes from the fact that the distribution of a species (fragmented vs. continuous habitats) influences its dispersal opportunities. In this work, we studied the effect of the spatial distribution on dispersal and coevolution between three species of social parasite ants of the genus Rossomyrmex (one distributed in high mountains in Spain and two distributed in extended plains in Turkey and Kazakhstan) and their ant hosts Proformica. We analysed the variation at the mitochondrial gene cytochrome c oxidase (COI) to infer female dispersal for parasites as well as the cuticular hydrocarbons (CHCs) of parasites and hosts to study their coevolutionary process, given that CHCs are involved in nestmate recognition. Our genetic results revealed a surprising scarce variation at COI for the three parasite species, suggesting selective forces that prevent from mutation fixation. Therefore, COI appeared to be a poor tool to study dispersal. Furthermore, chemical results showed population differentiation for all host–parasite systems, pointing that coevolution would take place at a local scale regardless of the spatial distribution or dispersal opportunities of the counterparts.

Keywords

COI Coevolution Cuticular hydrocarbons Spatial distribution Rossomyrmex Slave-making ants 

Notes

Acknowledgments

We thank the direction of the National Park of Sierra Nevada and the Natural Park of Baza for allowing us to sample. Also, we thank A. Fernández for helping us during the sampling. J.D. Ibáñez-Álamo made useful comments and kindly helped us with the figures. Two anonymous reviewers also suggested several comments to improve this manuscript. This research was funded by a project of the Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales. Ref: 78/2003. Also, a Grant from the Vicerrectorado de Relaciones Internacionales of the University of Granada to O. Sanllorente and A. Tinaut and a FPU grant to O. Sanllorente (Ministerio de Educación).

Supplementary material

40_2012_228_MOESM1_ESM.docx (406 kb)
Supplementary material 1 (DOCX 405 kb)

References

  1. Adiba S., Huet M. and Kaltz O. 2010. Experimental evolution of local parasite maladaptation. J. Evol. Biol. 23: 1195-1205Google Scholar
  2. Akino T. 2008. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. News 11: 173-181Google Scholar
  3. Avise J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, London.Google Scholar
  4. Bourke A.F.G. and Franks N.R. 1995. Social Evolution in Ants. Princetown University Press, Princetown, NJ.Google Scholar
  5. Brandt M., Heinze J., Schmitt T. and Foitzik S. 2005. A chemical level in the coevolutionary arms race between an ant social parasite and its hosts. J. Evol. Biol. 18: 576-586Google Scholar
  6. Brandt M., Fischer B., Heinze J. and Foitzik S. 2007. Population structure and the co-evolution between social parasites and their hosts. Mol. Ecol. 16: 2063-2078Google Scholar
  7. Chapman R.E. and Bourke A.F.G. 2001. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4: 650-662Google Scholar
  8. Clémencet J., Viginier B. and Doums C. 2005. Hierarchical analysis of population genetic structure in the monogynous ant Cataglyphis cursor using microsatellite and mitochondrial DNA markers. Mol. Ecol. 14: 3735-3744Google Scholar
  9. Clobert J., Danchin E., Dhondt A.A. and Nichols J.D. 2001. Dispersal. Oxford University Press, New York.Google Scholar
  10. Cooper J.D., Vitalis R., Paser P.M., Gopurenko D., Hellgren E.C., Gabor T.M. and DeWoody J.A. 2010. Quantifying male-biased dispersal in the collared peccary (Pecari tajacu) using analyses based on mtDNA variation. Heredity 104: 79-87Google Scholar
  11. Copren K.A., Nelson L.J., Vargo E.L. and Haverty M.I. 2005. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol. Phylogen. Evol. 35: 689-700Google Scholar
  12. d’Ettorre P. and Lenoir A. 2010. Nestmate recognition in ants. In: Ant Ecology (Lach L., Parr C. and Abbott K., Eds). Oxford University Press, Oxford, pp 194-209Google Scholar
  13. d’Ettorre P., Mondy N., Lenoir A. and Errard C. 2002. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc. R. Soc. Lond. B 269: 1911-1918Google Scholar
  14. Dronnet S., Lohou C., Christidès J.P. and Bagnères A.G. 2006 Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J. Chem. Ecol. 32: 1027-1042Google Scholar
  15. Elmes G.W., Akino T., Thomas J.A., Clarke R.T. and Knapp J.J. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130: 525-535Google Scholar
  16. Emery C. 1909. Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen. Biol. Centralbl. 29: 352-362Google Scholar
  17. Errard C., Ruano F., Richard F.J., Lenoir A., Tinaut A. and Hefetz A. 2006. Co-evolution-driven cuticular hydrocarbon variation between the slave-making ant Rossomyrmex minuchae and its host Proformica longiseta (Hymenoptera: Formicidae). Chemoecology 16: 235-240Google Scholar
  18. Excoffier L., Smouse P. and Quattro J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491Google Scholar
  19. Fischer B. and Foitzik S. 2004. Local co-adaptation leading to a geographical mosaic of coevolution in a social parasite system. J. Evol. Biol. 17: 1026-1034Google Scholar
  20. Foitzik S. and Herbers J.M. 2001. Colony structure of a slavemaking ant. I. Intracolony relatedness, worker reproduction and polydomy. Evolution 55: 307-315Google Scholar
  21. Forde S.E., Thompson J.N. and Bohannan B.J.M. 2004. Adaptation varies through space and time in coevolving host-parasitoid interaction. Nature 431: 841-844Google Scholar
  22. Frankham R., Ballou J.D. and Briscoe D.A. 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UKGoogle Scholar
  23. Gandon S. and Michalakis Y. 2002. Local adaptation, coevolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J. Evol. Biol. 15: 451-462Google Scholar
  24. Gandon S. and Nuismer S.L. 2009. Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am. Nat. 173: 212-224Google Scholar
  25. Gandon S., Capowiez Y., Dubois Y., Michalakis Y. and Olivieri I. 1996. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc. R. Soc. Lond. B 263: 1003-1009Google Scholar
  26. Goudet J. 2002. FSTAT A program to estimate and test gene diversities and fixation indices (Version 2932) Available from http://www.unilch/izea/softwares/fstathtml
  27. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acid. Symp. Ser. 41: 95-98Google Scholar
  28. Hartl D. and Clark A.G. 1997. Principles of Population Genetics. Sinauer associates, Sunderland, Massachusetts.Google Scholar
  29. Hebert P.D.N., Cywinska A., Ball S.L. and deWaard J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270: 313-321Google Scholar
  30. Hebert P.D.N., Penton E.H., Burns J.M., Janzen D.H. and Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl Acad. Sci. USA 101: 14812-14817Google Scholar
  31. Hedrick P.W. and Parker J.D. 1997. Evolutionary genetics and genetic variation of haplodiploids and x-linked genes. Annu. Rev. Ecol. Syst. 28:55-83Google Scholar
  32. Hefetz A. 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy—a review. Myrmecol. News 10: 59-68Google Scholar
  33. Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, CambridgeGoogle Scholar
  34. Lenoir A., D’Ettorre P., Errard C. and Hefetz A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46: 573-599Google Scholar
  35. Librado P. and Rozas J. 2009. DnaSP v.5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452Google Scholar
  36. Lively C.M. 1999. Migration, virulence and the geographic mosaic of adaptation by parasites. Am. Nat. 153: S34-S47Google Scholar
  37. Marikovsky P.Y. 1974. The biology of the ant Rossomyrmex proformicarum K.W. Arnoldi (1928). Insect. Soc. 21: 301-308Google Scholar
  38. Martin S.J., Helantera H. and Drijfhout F.P. 2008. Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol. J. Linn. Soc. 95: 131-140Google Scholar
  39. Martínez-Ibáñez M.D., Tinaut A. and Ruano F. 2006. Rossomyrmex minuchae Tinaut 1981. In: Libro Rojo de los Invertebrados de España (Verdú J.R. and Galante E., Eds). Dirección General para la Biodiversidad Ministerio de Medio Ambiente, Madrid, pp 1167-1170Google Scholar
  40. Morgan A.D., Gandon S. and Buckling A. 2005. The effect of migration on local adaptation in a coevolving host–parasite system. Nature 437: 253-256Google Scholar
  41. Nash D.R., Als T.D., Maile R., Jones G.R. and Boomsma J.J. 2008. A mosaic of chemical coevolution in a large blue butterfly. Science 319: 88-90Google Scholar
  42. Nei M. and Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426Google Scholar
  43. Nowbahari E., Lenoir A., Clément J.L., Lange C., Bagnères A.G. and Joulie C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18: 63-74Google Scholar
  44. Nuismer S.L., Thompson J.N. and Gomulkiewicz R. 2003. Coevolution between hosts and parasites with partially overlapping geographic ranges. J. Evol. Biol. 16: 1337-1345Google Scholar
  45. Ozaki M., Wada-Katsumata A., Fujikawa K., Iwasaki M., Yokohari F., Satoji Y., Nisimura T. and Yamaoka R. 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309: 311-314Google Scholar
  46. Pamilo P. and Crozier R.H. 1997. Population biology of social insect conservation. Mem. Mus. Vic. 56: 411-419Google Scholar
  47. Prugnolle F. and De Meeus T. 2002. Inferring sex-biased dispersal from population genetics tools: a review. Heredity 88: 161-165.Google Scholar
  48. Ruano F. and Tinaut A. 1999. Raid process activity pattern and influence of abiotic conditions in Rossomyrmex minuchae (Hymenoptera: Formicidae) a slave-maker species. Insect. Soc. 46: 341-347Google Scholar
  49. Ruano F. and Tinaut A. 2005. Mating behaviour in the slave-making ant Rossomyrmex minuchae (Hymenoptera Formicidae). Naturwissenschaften 92: 328-331Google Scholar
  50. Ruano F., Tinaut A., Sanllorente O. and Fernández-Zambrano A. 2007. Nuevas localidades para Rossomyrmex minuchae Tinaut, 1981 (Hymenoptera, Formicidae). Bol. Asoc. Esp. Ent. 31: 209-212Google Scholar
  51. Ruano F., Devers S., Sanllorente O., Errard C., Tinaut A. and Lenoir A. 2011. A geographic mosaic of coevolution in a slave-making host–parasite system. J. Evol. Biol. 24: 1071-1079Google Scholar
  52. Sanllorente O., Hammond R.L., Ruano F., Keller L. and Tinaut A. 2010. Extreme population differentiation in a vulnerable slave-making ant with a fragmented distribution. Cons. Gen. 11: 1701-1710Google Scholar
  53. Schneider S., Roessli D. and Excoffier L. 2000. ARLEQUIN ver 2.000. A software for population genetics data analysis. Available at: http://anthro.unige.ch/arlequin.
  54. Smith M.A., Fisher B.L. and Hebert P.D.N. 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Phil. Trans. R. Soc. Lond. B 360: 1828-1834Google Scholar
  55. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731-2739Google Scholar
  56. Thompson J.N. 1994. The Coevolutionary Process. The University of Chicago Press, ChicagoGoogle Scholar
  57. Thompson J.N. 1999. The evolution of species interactions. Science 284: 2116-2118Google Scholar
  58. Tinaut A., Ruano F., Sanllorente O., Fernández-Zambrano A., Karaman C. and Kaz Y. 2010. Nest composition and worker relatedness in three slave making ants of the genus Rossomyrmex Arnoldi and their Proformica Ruzsky hosts (Hymenoptera, Formicidae). Insect Sci. 17: 361-368Google Scholar
  59. Wilson E.O. 1971. The Insect Societies. Harvard University Press, Cambridge, MassachusettGoogle Scholar
  60. Zamora-Muñoz C., Ruano F., Errard C., Lenoir A., Hefetz A. and Tinaut A. 2003. Coevolution in the slave-parasite system Proformica longiseta - Rossomyrmex minuchae (Hymenoptera: Formicidae). Sociobiology 42: 299-317Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2012

Authors and Affiliations

  • O. Sanllorente
    • 1
    Email author
  • P. Lorite
    • 2
  • S. Devers
    • 3
  • F. Ruano
    • 1
  • A. Lenoir
    • 3
  • A. Tinaut
    • 1
  1. 1.Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biología Experimental, Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
  3. 3.Institut de Recherche sur la Biologie de l’Insecte, IRBI-UMR CNRS 6035, Faculté des Sciences et Techniques, Université François RabelaisToursFrance

Personalised recommendations