Insectes Sociaux

, Volume 59, Issue 1, pp 1–10 | Cite as

A review on self-destructive defense behaviors in social insects

  • J. R. ShorterEmail author
  • O. Rueppell
Review Article


Colony defense is a necessary but dangerous task for social insects, and nest defensive behaviors often lead to a premature death of the actor. As an extreme form of colony defense, self-sacrificial behaviors have evolved by kin selection in various social insects. Most self-sacrificial defensive mechanisms occur in response to an acute threat to the colony, but some behaviors are preemptive actions that avert harm to the colony. Self-sacrifice has also been observed as a form of preemptive defense against parasites and pathogens where individuals will abandon their normal colony function and die in self-exile to reduce the risk of infecting nestmates. Here, we provide an overview of the self-destructive defense mechanisms that eusocial insects have evolved and discuss avenues for future research into this form of altruism.


Altruism Autothysis Defensive behavior Host suicide Sting autotomy 



We would like to thank Matt Ginzel, Lauren Brierley, our editor, and two anonymous reviewers for helpful comments on the manuscript. O.R. was supported by a research grant from the North Carolina Biotechnology Center and the US National Institute of Food and Agriculture (AFRI grant #: #2010–65104-20533).


  1. Arechavaleta-Velasco M.E., Hunt G.J. and Emore C. 2003. Quantitative trait loci that influence the expression of guarding and stinging behaviors of individual honey bees. Behav. Genet. 33: 357–364Google Scholar
  2. Batchelor T.P. and Briffa M. 2011. Fight tactics in wood ants: individuals in smaller groups fight harder but die faster. P. Roy. Soc. Lond. B. Biol. 278: 3243–3250Google Scholar
  3. Benton R. 2011. Decision making: singin’ in the brain. Neuron. 69: 399–401Google Scholar
  4. Beshers S.N. and Fewell J.H. 2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46: 413–440Google Scholar
  5. Bordereau C., Robert A., VanTuyen V. and Peppuy A. 1997. Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insect. Soc. 44: 289–297Google Scholar
  6. Bourke A.F.G. 2008. Social evolution: daily self-sacrifice by worker ants. Curr. Biol. 18: R1100-R1101Google Scholar
  7. Breed M.D., Guzman-Novoa E. and Hunt G.J. 2004. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49: 271–298Google Scholar
  8. Buchwald R. and Breed M.D. 2005. Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim. Behav. 70: 1331–1337Google Scholar
  9. Buschinger A. and Maschwitz U. 1984. Defensive behavior and defensive mechanisms in ants. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 95–150Google Scholar
  10. Cook S.C. 2008. Functional and nutritional biology of exudate-feeding ants. PhD Thesis, University of Utah Press, UT, USAGoogle Scholar
  11. Costa-Leonardo A.M. 2004. A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44: 391–402Google Scholar
  12. Costa-Leonardo A.M. and Kitayama K. 1991. Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19: 333–338Google Scholar
  13. Cremer S. and Sixt M. 2009. Analogies in the evolution of individual and social immunity. Philos. T. Roy. Soc. B. 364: 129–142Google Scholar
  14. Cunard S.J. and Breed M.D. 1998. Post-stinging behavior of worker honey bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 91: 754–757Google Scholar
  15. Davidson D.W., Anderson N.F., Cook S.C., Bernau C.R., Jones T.H., Kamariah A.S., Lim L.B., Chan C.M. and Clark D.A. 2009. An experimental study of microbial nest associates of Borneo’s exploding ants (Camponotus [Colobopsis] species). J. Hymenopt. Res. 18: 341–360Google Scholar
  16. Davidson D.W., Kamariah A.S. and Billen J. 2011. Histology of structures used in territorial combat by Borneo’s ‘exploding ants’. Acta Zool.-Stockholm 00: 1–5Google Scholar
  17. Davidson D.W., Lessard J.P., Bernau C.R. and Cook S.C. 2007. The tropical ant mosaic in a primary Bornean rain forest. Biotropica 39: 468–475Google Scholar
  18. Deligne J. and De Coninck E. 2006. Suicidal defence through a dehiscent frontal weapon in Apilitermes longiceps soldiers (Isoptera: Termitidae). Belg. J. Entomol. 8: 3–10Google Scholar
  19. Edwards J.S. 1966. Defense by smear: supercooling in the cornicle wax of aphids. Nature 211: 73–74Google Scholar
  20. Ellis R.E., Yuan J.Y. and Horvitz H.R. 1991. Mechanisms and functions of cell-death. Annu. Rev. Cell Biol. 7: 663–698Google Scholar
  21. Fewell J.H. 2003. Social insect networks. Science 301: 1867–1870Google Scholar
  22. Foster K.R., Wenseleers T. and Ratnieks F.L.W. 2006. Kin selection is the key to altruism. Trends Ecol. Evol. 21: 57–60Google Scholar
  23. Foster W.A. 2010. Behavioural ecology: the menopausal aphid glue-bomb. Curr. Biol. 20: R559-R560Google Scholar
  24. Fraser C., Riley S., Anderson R.M. and Ferguson N.M. 2004. Factors that make an infectious disease outbreak controllable. P. Natl. Acad. Sci. U.S.A. 101: 6146–6151Google Scholar
  25. Greene A., Breisch N.L., Golden D.B.K., Kwiterovich K.A., Addison B.I. and Schuberth K.C. 1989. The sting that stays: autotomy in 2 common yellowjacket species. J. Allergy Clin. Immun. 83: 229–229Google Scholar
  26. Hamilton W.D. 1964. Genetical evolution of social behaviour. J. Theor. Biol. 7: 1–16Google Scholar
  27. Hart A.G. and Ratnieks F.L.W. 2002. Waste management in the leaf-cutting ant Atta colombica. Behav. Ecol. 13: 224–231Google Scholar
  28. Heinze J. and Walter B. 2010. Moribund ants leave their nests to die in social isolation. Curr. Biol. 20: 249–252Google Scholar
  29. Hermann H.R. 1971. Sting autotomy—defensive mechanism in certain social Hymenoptera. Insect. Soc. 18(2): 111–120Google Scholar
  30. Hermann H.R. 1984a. Defensive mechanisms: general considerations. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 1–31Google Scholar
  31. Hermann H.R. 1984b. Elaboration and reduction of the venom apparatus in aculeate Hymenoptera. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 201–238Google Scholar
  32. Herrmann M., Trenzcek T., Fahrenhorst H. and Engels W. 2005. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones. Genet. Molec. Res. 4: 624–641Google Scholar
  33. Higes M., Martin-Hernandez R., Botias C., Bailon E.G., Gonzalez-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jimenez J.J., Palencia P.G. and Meana A. 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10: 2659–2669Google Scholar
  34. Hohorst W. and Graefe G. 1961. Ameisen - obligatorische Zwischenwirte des Lanzettegels (Dicrocoelium dendriticum). Naturwissenschaften 48: 229–230Google Scholar
  35. Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press: Cambridge, Massachusetts, USAGoogle Scholar
  36. Hughes D.P., Pierce N.E. and Boomsma J.J. 2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23: 672–677Google Scholar
  37. Human K.G. and Gordon D.M. 1999. Behavioral interactions of the invasive Argentine ant with native ant species. Insect. Soc. 46: 159–163Google Scholar
  38. Hunt G.J. 2007. Flight and fight: A comparative view of the neurophysiology and genetics of honey bee defensive behavior. J. Insect Physiol. 53: 399–410Google Scholar
  39. Hunt G.J., Guzman-Novoa E., Fondrk M.K. and Page R.E. 1998. Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148: 1203–1213Google Scholar
  40. Hydak M.H. 1951. How long does a bee live after losing its sting. Gleanings Bee Cult. 79: 85–86Google Scholar
  41. Jeanne R.L. 1986. The evolution of the organization of work in social insects. Ital. J. Zool. 20: 119–133Google Scholar
  42. Jones T.H., Clark D.A., Edwards A.A., Davidson D.W., Spande T.F. and Snelling R.R. 2004. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30: 1479–1492Google Scholar
  43. Khoury D.S., Myerscough M.R. and Barron A.B. 2011. A quantitative model of honey bee colony population dynamics. PLoS One 6: e18491Google Scholar
  44. Kohatsu S., Koganezawa M. and Yamamoto D. 2011. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69: 498–508Google Scholar
  45. Kolmes S.A. and Fergusson-Kolmes L.A. 1989. Stinging behavior and residual value of worker honey bees (Apis-mellifera). J. N.Y. Entomol. Soc. 97: 218–231Google Scholar
  46. Kralj J. and Fuchs S. 2006. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577–587Google Scholar
  47. Kralj J. and Fuchs S. 2010. Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie 41: 21–28Google Scholar
  48. Kurosu U., Aoki S. and Fukatsu T. 2003. Self-sacrificing gall repair by aphid nymphs. P. Roy. Soc. Lond. B. Biol. 270: S12-S14Google Scholar
  49. Kurzfeld-Zexer L., Wool D. and Inbar M. 2010. Modification of tree architecture by a gall-forming aphid. Trees-Struct. Funct. 24: 13–18Google Scholar
  50. Kutsukake M., Shibao H., Uematsu K. and Fukatsu T. 2009. Scab formation and wound healing of plant tissue by soldier aphid. P. Roy. Soc. Lond. B. Biol. 276: 1555–1563Google Scholar
  51. Libersat F., Delago A. and Gal R. 2009. Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 54: 189–207Google Scholar
  52. Manzoli-Palma M.D., daCunha M.S. and Gobbi N. 1997. Muscles-bearing of sting apparatus in social wasps and their relationship with the autotomy (Hymenoptera: Vespidae: Polistinae). J. Adv. Zool. 18: 1–6Google Scholar
  53. Maschwitz U. and Maschwitz E. 1974. Platzende Arbeiterinnen: Eine neue Art der Feindabwehr bei sozialen Hautflüglern. Oecologia 14: 289–294Google Scholar
  54. McAllister M.K. and Roitberg B.D. 1987. Adaptive suicidal-behavior in pea aphids. Nature 328: 797–799Google Scholar
  55. Millor J., Pham-Delegue M., Deneubourg J.L. and Camazine S. 1999. Self-organized defensive behavior in honeybees. P. Natl. Acad. Sci. U.S.A. 96: 12611–12615Google Scholar
  56. Moron D., Witek M. and Woyciechowski M. 2008. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75: 345–350Google Scholar
  57. Moura F.M.S., Vasconcellos A., Silva N.B. and Bandeira A.G. 2011. Caste development systems of the neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae). Insect. Soc. 58: 169–175Google Scholar
  58. Mulfinger L., Yunginger J., Styer W., Guralnick M. and Lintner T. 1992. Sting morphology and frequency of sting autotomy among medically important vespids (Hymenoptera, Vespidae) and the honey bee (Hymenoptera, Apidae). J. Med. Entomol. 29: 325–328Google Scholar
  59. Muller C.B. and Schmid-Hempel P. 1993. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363: 65–67Google Scholar
  60. Naug D. and Camazine S. 2002. The role of colony organization on pathogen transmission in social insects. J. Theor. Biol. 215: 427–439Google Scholar
  61. Nogueira-Neto P. 1964. The spread of a fierce African bee in Brazil. Bee World 45: 119–121Google Scholar
  62. O’Gorman R., Wilson D.S. and Miller R.R. 2005. Altruistic punishing and helping differ in sensitivity to relatedness, friendship, and future interactions. Evol. Hum. Behav. 26: 375–387Google Scholar
  63. Oster G.F. and Wilson E.O. 1978. Caste and Ecology in the Social Insects. Princeton University Press, Princeton. NJGoogle Scholar
  64. Pike N. 2007. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae. BMC Evol. Biol. 7: 18Google Scholar
  65. Pike N. and Foster W. 2004. Fortress repair in the social aphid species Pemphigus spyrothecae. Anim. Behav. 67: 909–914Google Scholar
  66. Poulin R. 1992. Altered behavior in parasitized bumblebees - parasite manipulation or adaptive suicide. Anim. Behav. 44: 174–176Google Scholar
  67. Poulin R., Brodeur J. and Moore J. 1994. Parasite manipulation of host behaviour: should hosts always lose? Oikos 70: 479–484Google Scholar
  68. Quenette P.Y. 1990. Functions of vigilance behavior in mammals - a review. Acta Oecol. 11: 801–818Google Scholar
  69. Ratnieks F.L.W. and Wenseleers T. 2008. Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol. Evol. 23: 45–52Google Scholar
  70. Rueppell O., Bachelier C., Fondrk M.K. and Page R.E. 2007. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp. Gerontol. 42: 1020–1032Google Scholar
  71. Rueppell O., Hayworth M.K. and Ross N.P. 2010. Altruistic self-removal of health-compromised honey bee workers from their hive. J. Evol. Biol. 23: 1538–1546Google Scholar
  72. Sands W.A. 1982. Agonistic behavior of African soldierless Apicotermitinae (Isoptera, Termitidae). Sociobiology 7: 61–72Google Scholar
  73. Santomauro G., Oldham N.J., Boland W. and Engels W. 2004. Cannibalism of diploid drone larvae in the honey bee (Apis mellifera) is released by odd pattern of cuticular substances. J. Apicult.Res. 43: 69–74Google Scholar
  74. Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton University Press, Princeton, NJGoogle Scholar
  75. Schmidt J.O., Blum M.S. and Overal W.L. 1980. Comparative lethality of venoms from stinging Hymenoptera. Toxicon 18: 469–474Google Scholar
  76. Schumacher M.J. and Egen N.B. 1995. Significance of Africanized bees for public-health - a review. Arch. Intern. Med. 155: 2038–2043Google Scholar
  77. Shapiro A.M. 1976. Beau Geste? Am. Nat. 110: 900–902Google Scholar
  78. Sledge M.F., Dani F.R., Fortunato A., Maschwitz U., Clarke S.R., Francescato E., Hashim R., Morgan E.D., Jones G.R. and Turillazzi S. 1999. Venom induces alarm behaviour in the social wasp Polybioides raphigastra (Hymenoptera: Vespidae): an investigation of alarm behaviour, venom volatiles and sting autotomy. Physiol. Entomol. 24(3): 234–239Google Scholar
  79. Smith-Trail D.R. 1980. Behavioral interactions between parasites and hosts: host suicide and the evolution of complex life cycles. Am. Nat. 116: 77–91Google Scholar
  80. Sobotnik J., Bourguignon T., Hanus R., Weyda F. and Roisin Y. 2010a. Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol. J. Linn. Soc. 99: 839–848Google Scholar
  81. Sobotnik J., Sillam-Dusses D., Weyda F., Dejean A., Roisin Y., Hanus R. and Bourguignon T. 2010b. The frontal gland in workers of neotropical soldierless termites. Naturwissenschaften 97: 495–503Google Scholar
  82. Thorne B.L. 1997. Evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 28: 27–54Google Scholar
  83. Tofilski A. 2002. Influence of age polyethism on longevity of workers in social insects. Behav. Ecol. Sociobiol. 51: 234–237Google Scholar
  84. Tofilski A. 2006. Influence of caste polyethism on longevity social insect colonies. J. Theor. Biol. 238: 527–531Google Scholar
  85. Tofilski A. 2009. Shorter-lived workers start foraging earlier. Insect. Soc. 56: 359–366Google Scholar
  86. Tofilski A., Couvillon M.J., Evison S.E.F., Helanterä H., Robinson E.J.H. and Ratnieks F.L.W. 2008. Preemptive defensive self-sacrifice by ant workers. Am. Nat. 172: E239-E243Google Scholar
  87. Uematsu K., Kutsukake M., Fukatsu T., Shimada M. and Shibao H. 2007. Altruistic defenders in a Japanese gall-forming aphid, Quadrartus yoshinomiyai (Homoptera: Aphididae: Hormaphidinae). Sociobiology 50: 711–724Google Scholar
  88. Uematsu K., Kutsukake M., Fukatsu T., Shimada M. and Shibao H. 2010. Altruistic colony defense by menopausal female insects. Curr. Biol. 20: 1182–1186Google Scholar
  89. van Zweden J.S., Gruter C., Jones S.M. and Ratnieks F.L.W. 2011. Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra- and inter-specific comparisons. Behav. Ecol. Sociobiol. 65: 1277–1282Google Scholar
  90. vanEngelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y.P., Underwood R., Tarpy D.R. and Pettis J.S. 2009. Colony collapse disorder: a descriptive study. PLoS One 4: e6481Google Scholar
  91. von Philipsborn A.C., Liu T.X., Yu J.Y., Masser C., Bidaye S.S. and Dickson B.J. 2011. Neuronal control of Drosophila courtship song. Neuron 69: 509–522Google Scholar
  92. Williams M.W. and Williams C.S. 1965. Toxicity of ant venom further studies of venom from Pogonomyrmex barbatus. P. Soc. Exp. Biol. Med. 119: 344–346Google Scholar
  93. Wilson E.O. 1975. Sociobiology. Belknap Press, Cambridge, MAGoogle Scholar
  94. Woyciechowski M. and Kozlowski J. 1998. Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie 29: 191–205Google Scholar
  95. Woyciechowski M. and Moron D. 2009. Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insect. Soc. 56: 193–201Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  1. 1.Department of GeneticsNorth Carolina State UniversityRaleighUSA
  2. 2.Department of BiologyUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations