Advertisement

Insectes Sociaux

, 58:431 | Cite as

An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera)

  • K. E. AndersonEmail author
  • T. H. Sheehan
  • B. J. Eckholm
  • B. M. Mott
  • G. DeGrandi-Hoffman
Review Article

Abstract

Across the globe, honey bee populations have been declining at an unprecedented rate. Managed honey bees are highly social, frequent a multitude of environmental niches, and continually share food, conditions that promote the transmission of parasites and pathogens. Additionally, commercial honey bees used in agriculture are stressed by crowding and frequent transport, and exposed to a plethora of agricultural chemicals and their associated byproducts. When considering this problem, the hive of the honey bee may be best characterized as an extended organism that not only houses developing young and nutrient rich food stores, but also serves as a niche for symbiotic microbial communities that aid in nutrition and defend against pathogens. The niche requirements and maintenance of beneficial honey bee symbionts are largely unknown, as are the ways in which such communities contribute to honey bee nutrition, immunity, and overall health. In this review, we argue that the honey bee should be viewed as a model system to examine the effect of microbial communities on host nutrition and pathogen defense. A systems view focused on the interaction of the honey bee with its associated microbial community is needed to understand the growing agricultural challenges faced by this economically important organism. The road to sustainable honey bee pollination may eventually require the detoxification of agricultural systems, and in the short term, the integrated management of honey bee microbial systems.

Keywords

Symbiosis Extended organism Social insects Microbial ecology Pathogen defense 

Notes

Acknowledgments

We thank Jay Evans, Timothy Linksvayer, Scott Turner and Michiel Dijkstra for suggestions that improved the manuscript. This work is dedicated to Martha Gilliam, who devoted her career to the characterization of honey bee associated microbes. The USDA/ARS is an equal opportunity employer and provider.

References

  1. Alaux C., Brunet J., Dussaubat C. et al. 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12: 774-782Google Scholar
  2. Alippi A.M. and Reynaldi F.J. 2006. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J. Invert. Path. 91: 141-146Google Scholar
  3. Amdam G.V., Aase A.L., Seehuus S.C., Fondrk K.M., Norberg K. and Hartfelder K. 2005. Social reversal of immunosenescence in honey bee workers. Exp.Gerontol. 40: 939-947Google Scholar
  4. Antunez K., Martín-Hernández R., Prieto L., Meana A., Zunino P. and Higes M. 2009. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11: 2284-2290Google Scholar
  5. Audisio M.C., Torres M., Sabate D.C., Ibarguren C. and Apella M.C. 2010. Properties of different lactic acid bacteria isolated from Apis mellifera L. Microbiol. Res. doi: 10.1016/j.micres.2010.01.003
  6. Babendreier D., Joller D., Romeis J., Bigler F. and Widmer F. 2007. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59: 600-610Google Scholar
  7. Batra L.R. and Batra S.W.T. 1979. In: Insect- Fungus Symbiosis (Batra L.R., Ed), Allanheld and Osmun, New Jersey, pp 117-163Google Scholar
  8. Barton E.S., White D.W., Cathelyn J.S. et al. 2007. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447: 326-330Google Scholar
  9. Bedick J.C., Tunaz H., Nor Aliza A.R., Putnam S.M., Ellis M.D. and Stanley D.W. 2001. Eicosanoids act in nodulation reactions to bacterial infections in newly emerged adult honey bees, Apis mellifera, but not in older foragers. Comp. Biochem. Physiol. 130: 107-117Google Scholar
  10. Berg R.D. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435Google Scholar
  11. Berger B., Pridmore R.D., Barretto C. et al. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J. Bacteriol. 189: 1311-1321Google Scholar
  12. Bilikova K., Gusui W. and Simuth J. 2001. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32: 275-283Google Scholar
  13. Cano R.J., Borucki M.K., Higby-Schweitzer M., Poinar H.N., Poinar Jr. G.O. and Pollard K.J. 1994. Bacillus DNA in fossil bees: an ancient symbiosis? Appl. Environ. Microbiol. 60: 2164-2167Google Scholar
  14. Chan Q.W. and Foster L.J. 2008. Changes in protein expression during honey bee larval development. Genome Biol. doi: 10.1186/gb-2008-9-10-r156.
  15. Charbonneau R., Gosselin P. and Thibault C. 1992. Irradiation and American foulbrood. Am Bee J. 132: 249-251Google Scholar
  16. Chen Y., Pettis J.S. and Feldlaufer M.F. 2005. Detection of multiple viruses in queens of the honey bee Apis mellifera L. J. Invert. Pathol. 90: 118-121Google Scholar
  17. Chen Y.P. and Siede R. 2007. Honey bee viruses. Adv. Virus. Res. 70: 33-80Google Scholar
  18. Chenoweth M.R., Somerville G.A., Krause D.C., O’Reilly K.L. and Gherardini F.C. 2004. Growth characteristics of Bartonella henselae in a novel liquid medium: primary isolation, growth-phase-dependent phage induction, and metabolic studies. Appl. Environ. Microbiol. 70: 656-663Google Scholar
  19. Cox-Foster D.L., Conlan S., Holmes E.C. et al. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287Google Scholar
  20. Crailsheim K. 1998. Trophallactic interactions in the adult honey bee (Apis mellifera L.). Apidologie 29: 97-112Google Scholar
  21. Crailsheim K., Schneider L.H.W., Hrassnigg N. et al. 1992. Pollen consumption and utilization in worker honey bees: dependence on individual age and function. J. Insect Physiol. 38: 409-419Google Scholar
  22. Currie C.R, Scott J.A., Summerbell R.C. and Malloch D. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701-704Google Scholar
  23. Currie C.R., Poulsen M., Mendenhall J., Boomsma J.J. and Billen J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311: 81-83Google Scholar
  24. Dillon R.J. and Dillon V.M. 2004. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92Google Scholar
  25. Dillon R. and Charnley K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153: 503-509Google Scholar
  26. Douglas A.E. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43: 17-37Google Scholar
  27. Egorova A. 1971. Preservative microflora in stored pollen. Vet. 8: 40-41Google Scholar
  28. Evans J.D. and Pettis J.S. 2005. Colony-level effects of immune responsiveness in honey bees, Apis mellifera. Evolution 59: 2270-2274Google Scholar
  29. Evans J.D. and Armstrong T.N. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 6: 4-12Google Scholar
  30. Evans J.D. 2006. Bee path: an ordered quantitative-pcr array for honey bee immunity and disease. J. Invert. Pathol. 93: 135-139Google Scholar
  31. Evans J.D., Aronstein K., Chen Y.P. et al. 2006. Immune pathways and defense mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15: 645-656Google Scholar
  32. Evans J.D. and Spivak M. 2010. Socialized medicine: individual and communal disease barriers in honey bees. J. Invert. Pathol. 103: S62-S72Google Scholar
  33. F.A.O. 2009. ProdSTAT Database. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx Accessed 25 July 2010
  34. Feigenbaum C. and Naug D. 2010. The influence of social hunger on food distribution and its implications for disease transmission in a honeybee colony. Insect. Soc. 57: 217-222Google Scholar
  35. Feldhaar H. and Gross R. 2009. Insects as hosts for mutualistic bacteria. Int. J. Med. Microbiol. 299: 1-8Google Scholar
  36. Fontana R., Mendes M.A., De Souza B.M. and Konno K. 2004. Jelleines: a family of antimacrobial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 25: 919-928Google Scholar
  37. Forsgren E., Olofsson T.C., Vasquez A. and Fries I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41: 99-108Google Scholar
  38. Foote H.L. 1957. Possible use of microorganisms in synthetic bee bread production. Am. Bee J. 97: 476-478 Google Scholar
  39. Fraser-Liggett C.M. 2005. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15: 1603-1610Google Scholar
  40. Free B. 1957. The transmission of food between worker honeybees. Br. J. Anim. Behav. 5: 41-47Google Scholar
  41. Genersch E. and Aubert M. 2010. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet. Res. 41: 54Google Scholar
  42. Genersch E., Evans J.D. and Fries I. 2010. Honey bee disease overview. J. Invert. Pathol. 103: S2-S4Google Scholar
  43. Gerardo N.M., Altincicek B., Anselme C. et al. 2010. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology 11: R21 http://genomebiology.com/2010/11/2/R21.
  44. Gibson C.M. and Hunter M.S. 2010. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13: 223-234Google Scholar
  45. Gill S.R., Pop M., DeBoy R.T. et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359Google Scholar
  46. Gilliam M. 1971. Microbial sterility of the intestinal content of the immature honey bee, Apis mellifera. Ann. Entomol. Soc. Am. 64: 315-316Google Scholar
  47. Gilliam M., Wickerham L.J., Morton H.L. and Martin R.D. 1974. Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J. Invert. Path. 24: 349-356Google Scholar
  48. Gilliam M. 1979a. Microbiology of pollen and bee bread: The yeasts. Apidologie 10: 43-53 Google Scholar
  49. Gilliam M. 1979b. Microbiology of pollen and bee bread: The genus Bacillus. Apidologie 10: 269-274Google Scholar
  50. Gilliam M., Moffett J.O. and Kauffeld N.M. 1983. Examination of floral nectar of citrus, cotton, and Arizona desert plants for microbes. Apidologie 14: 299-302Google Scholar
  51. Gilliam M. and Prest D.B. 1987. Microbiology of the feces of the larval honey bee, Apis mellifera. J. Invert. Pathol. 49: 70-75Google Scholar
  52. Gilliam M., Taber III S., Lorenz B.J. and Prest D.B. 1988. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J. Invert. Pathol. 52: 314-325Google Scholar
  53. Gilliam M., Prest D.B. and Lorenz B.J. 1989. Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20: 53-68Google Scholar
  54. Gilliam M. 1997. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 155: 1-10Google Scholar
  55. Hamdi C., Balloi A., Essanaa J. et al. 2011. Gut microbiome dysbiosis and honeybee health. J. Appl. Entomol. doi: 10.1111/j.1439-0418.2010.01609.x
  56. Handelsman J., Rondon M.R., Brady S.F., Clardy J. and Goodman R.M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: 245-249Google Scholar
  57. Haydak M.H. 1958. Pollen and pollen substitutes; bee bread. Am. Bee J. 98: 145-146Google Scholar
  58. Herrera C.M., de Vega C., Canto A. and Pozo M.I. 2009. Yeasts in floral nectar: a quantitative survey. Ann. Bot. doi: 10.1093/aob/mcp026
  59. Hughes D.P., Pierce N.E. and Boomsma J.J. 2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23: 672-677Google Scholar
  60. Human H. and Nicolson S.W. 2006. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochem. 67: 1486-1492Google Scholar
  61. Hunt G. J., Page R.E., Fondrk M.K. and Dullum C.J. 1995. Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141: 1537-1545Google Scholar
  62. Huson D.H., Richter D.C., Mitra S., Auch A.F. and Schuster S.C. 2009. Methods for comparative metagenomics. BMC Bioinformatics doi: 10.1186/1471-2105-10-S1-S12
  63. Ishikawa H. 2003. Insect symbiosis: An introduction. In: Insect Symbiosis (Bourtzis K. and Miller T.A., Eds), CRC press, Boca Raton FL, USA. pp 1-21Google Scholar
  64. Jeyaprakash A., Hoy M.A. and Allsopp M.H. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using16S rRNA sequences. J. Invert. Pathol. 84: 96-103Google Scholar
  65. Johnson R.M., Evans J.D., Robinson G.E. and Berenbaum M.R. 2009. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl Acad. Sci. USA 106: 14790-14795Google Scholar
  66. Jolles P. and Jolles J. 1984. What’s new lysozyme research? Mol. Cell Biochem. 63: 165-189Google Scholar
  67. Kachaniova M., Chlebo R., Kopernicky M. and Trakovicka A. 2004. Microflora of the honeybee gastrointestinal tract. Folia Microbiol. 49: 169-171Google Scholar
  68. Katz E. and Demain A.L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474Google Scholar
  69. Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24: 195-204Google Scholar
  70. Klungness L.M. and Peng Y. 1984. A histochemical study of pollen digestion in the alimentary canal of honeybees (Apis mellifera L.) J. Insect Physiol. 30: 51 I-521Google Scholar
  71. Korst P.J.A.M. and Velthuis H.H.W. 1982. The nature of trophallaxis in honey bees. Insect. Soc. 29: 209-221Google Scholar
  72. Kroon G.H., van Praagh J.P. and Velthuis H.H.W. 1974. Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. J. Apicult. Res. 13: 177-181Google Scholar
  73. Kubo T., Sasaki M., Nakamura J. et al. 1996. Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119: 291-295Google Scholar
  74. Kuhnholz S. and Seeley T.D. 1997. The control of water collection in honey bee colonies. Behav. Ecol. Sociobiol. 41: 407-422Google Scholar
  75. Kujumgiev A., Tsvetkova I., Serkedjieva Y., Bankova V., Christov R. and Popov S. 1999. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64: 235-240Google Scholar
  76. Kunieda T, Fujiyuki T., Kucharski R. et al. 2006. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol. Biol. 15: 563-576Google Scholar
  77. Lemos E.G., Alves L.M.C. and Campanharo J.C. 2003. Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol. Lett. 219: 39-45Google Scholar
  78. Little A.E.F., Murakami T., Mueller U.G. and Currie C.R. 2006. Defending against parasites: fungus-growing ants combine specialized behaviors and microbial symbionts to protect their fungus gardens. Biol. Lett. 2: 12-16Google Scholar
  79. Little A.E.F. and Currie C.R. 2008. Black yeast symboints compromise the efficiency of antibiotic defenses in fungus growing ant. Ecology 89: 1216-1222Google Scholar
  80. Maddrell S.H.P. and Gardiner B.O.C. 1980. The permeability of the cuticular lining of the insect alimentary canal. J. Exp. Biol. 85: 227-237Google Scholar
  81. Martinson V.G., Danforth B.N., Minckley R.L., Rueppell O., Tingek S. and Moran N. 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20: 619-628Google Scholar
  82. McSweeney P.L.H. 2004. Biochemistry of cheese ripening. Int. J. Dairy Technol. 57: 127-144Google Scholar
  83. Meyer W. 1956. Propolis bees and their activities. Bee World 37: 25-36Google Scholar
  84. Millet V. and Lonvaud-Funel A. 2000. The viable but non-culturable state of wine micro-organisms during storage. Lett. Appl. Microbiol. 30: 136-141Google Scholar
  85. Mitsuoka T. 1992. The human intestinal tract. In: The Lactic Acid Bacteria: Volume I, The Lactic Acid Bacteria in Health and Disease (Wood B.J.B., Ed), Elsevier Science Publishers, Ltd., Essex, England, pp 69-114Google Scholar
  86. Moran N.A. and Telang A. 1998. Bacteriocyte-associated symbionts of insects-a variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48: 295-304Google Scholar
  87. Moran N.A., Degnan P.H., Santos S.R., Dunbar H.E. and Ochman H. 2005. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102: 16919-16926Google Scholar
  88. Morgan J.L., Darling A.E. and Eisen J.A. 2010. Metagenomic sequencing of an in vitro-simulated microbial community. PLoS ONE doi: 10.1371/journal.pone.0010209
  89. Mohr K.I. and Tebbe C.C. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8:258-272Google Scholar
  90. Mrazek J., Strosova L., Fliegerova K., Kott T. and Kopecny J. 2008. Diversity of insect intestinal microflora. Folia Microbiol. 53: 229-233Google Scholar
  91. Mullin C.A., Frazier M., Frazier J.L. et al. 2010. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE doi: 10.1371/journal.pone.0009754
  92. Oldroyd B.P. 2007. What’s killing American honey nees? PLoS Biol. doi: 10.1371/journal.pbio.0050168
  93. Olofsson T.C. and Vasquez A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honeybee Apis mellifera. Curr. Microbiol. 57: 356-363Google Scholar
  94. Ohashi K., Sawata M., Takeuchi H., Natori S. and Kubo T. 1996. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221: 380-385Google Scholar
  95. Ohashi K., Natori S. and Kubo T. 1997. Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249: 797-802Google Scholar
  96. Pacinia E. and Hesse M. 2005. Pollenkitt - its composition, forms and functions Flora 200: 399-415Google Scholar
  97. Promnuan Y., Kudo T. and Chantawannakul P. 2009. Actinomycetes isolated from beehives in Thailand. World J. Microbiol. Biotechnol. 25: 1685-1689Google Scholar
  98. Rada V., Machova M., Achovahuk J., Marounek M. and Duskova D. 1997. Microflora in the honeybee digestive tract: counts, characteristics and sensitivity to veterinary drugs. Apidologie 28: 357-365Google Scholar
  99. Ribiere M., Oliver V., Blanchard P. et al. 2008. The collapse of bee colonies: The CCD case (Colony collapse disorder) and the IAPV virus (Israeli acute paralysis virus). Virologie 12: 319-322Google Scholar
  100. Romanelli A, Moggio L., Montella R.C. et al. 2011. Peptides from royal jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J. Pept. Sci. 17: 348-352Google Scholar
  101. Rouland-Lefèvre C, Inoue T. and Johjima T. 2006. Termitomyces/termite interactions. In: Intestinal Microorganisms of Soil Invertebrates (Konig H. and Varma A., Eds), Springer-Verlag, New-York, pp 335-350Google Scholar
  102. Ruiz-Argueso T. and Rodriguez-Navarro A. 1975. Microbiology of ripening honey. Appl. Microbiol. 30: 893-896Google Scholar
  103. Runckel C., Flenniken M.L., Engel J.C. et al. 2011. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE doi: 10.1371/journal.pone.0020656
  104. Russell J.A., Moreau C.S., Goldman-Huertas B., Fujiwara M., Lohman D.J. and Pierce N.E. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. USA 106: 21236-21241Google Scholar
  105. Sandhu D.K. and Waraich M.K. 1985. Yeasts associated with pollinating bees and flower nectar. Microb. Ecol. 11: 51-58Google Scholar
  106. Sauer K, Camper A.K., Ehrlich G.D., Costerton J.W. and Davies D.G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154Google Scholar
  107. Scarborough C.L., Ferrari J. and Godfray H.C. 2005. Aphid protected from pathogen by endosymbiont. Science 310: 1781Google Scholar
  108. Schmid-Hempel P. 2005. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50: 529-551Google Scholar
  109. Seeley T.D. 1995. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Cambridge, MA: Harvard University PressGoogle Scholar
  110. Shapiro O.H., Kushmaro A. and Brenner A. 2010. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. Int. Soc. Microb. Ecol. 4: 327-336Google Scholar
  111. Shimizu-Kadota M., Sakurai T. and Tsuchida N. 1983. Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1. 45: 669-674Google Scholar
  112. Simon C. and Rolf D. 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85 :265-276Google Scholar
  113. Simone M., Evans J.D. and Spivak M. 2009. Resin collection and social immunity in honey bees. Evolution 63: 3016-3022Google Scholar
  114. Strand M.R. 2008. The insect cellular immune response. Insect Science 15: 1-14Google Scholar
  115. Tanada Y. and Kaya H.K. 1993. Insect Pathology. Academic Press, San DiegoGoogle Scholar
  116. Takayuki U., Nakaoka T., Takeuchi H. and Kubo T. 2009. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 26: 557-563Google Scholar
  117. Terra W.R. and Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol. 109B: 1-62Google Scholar
  118. Turner J.S. 2000. The Extended Organism. The Physiology of Animal-Built Structures. Harvard University Press, Cambridge, MAGoogle Scholar
  119. Turner J.S. 2004. Extended phenotypes and extended organisms. Biol. Philos. 19: 327-352Google Scholar
  120. Tyson G.W. and Banfield J.F. 2005. Cultivating the uncultivated: A community genomics perspective. Trends Microbiol. 13: 411-415Google Scholar
  121. van Engelsdorp D. and Meixner M.D. 2009. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invert. Pathol. 103: S80-S95Google Scholar
  122. Watanabe M.E. 2008. Colony collapse disorder: Many suspects, no smoking gun. BioSci. 5: 384-388Google Scholar
  123. Winston M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MAGoogle Scholar
  124. Zilber-Rosenberg I. and Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32: 723-735Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) (outside the USA) 2011

Authors and Affiliations

  • K. E. Anderson
    • 1
    • 2
    Email author
  • T. H. Sheehan
    • 2
  • B. J. Eckholm
    • 2
  • B. M. Mott
    • 1
  • G. DeGrandi-Hoffman
    • 1
  1. 1.Carl Hayden Bee Research Center, USDA-ARSTucsonUSA
  2. 2.Department of EntomologyUniversity of ArizonaTucsonUSA

Personalised recommendations